SEARCH

SEARCH BY CITATION

References

  • Agresti, A., Caffo, B. & Ohman-Strickland, P. (2004). Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Comput. Statist. Data Anal. 47, 639653.
  • Bhattacharya, J., Goldman, D. & McCaffrey, D. (2006). Estimating probit models with self-selected treatments. Statist. Med. 25, 389413.
  • Brugiavini, A., Jappelli, T. & Weber, G. (2002). The survey on health, aging and wealth. CSEF Working Papers 86, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy. Available from URL: http://ideas.repec.org/p/sef/csefwp/86.html [Last accessed 24 August 2013].
  • Buchmueller, T., Grumbach, K., Kronick, R. & Kahn, J. (2005). The effect of health insurance on medical care utilization and implications for insurance expansion: a review of the literature. Med. Care Res. Rev. 62, 330.
  • Carroll, R.J. & Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83, 11841186.
  • Chen, J., Zhang, D. & Davidian, M. (2002). A Monte Carlo EM algorithm for generalized linear mixed models with flexible random effects distribution. Biostatistics 3, 347360.
  • Chib, S. & Greenberg, E. (2007). Semiparametric modeling and estimation of instrumental variable models. J. Comput. Graph. Statist. 16, 86114.
  • Craven, P. & Wahba, G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31, 377403.
  • Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. B Statist. Methodol. 39, 122.
  • Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in solobev spaces. In ‘Construction Theory of Functions of Several Variables, eds. W. Schemp & K. Zeller, pp. 85100. Springer: Springer.
  • Fabbri, D. & Monfardini, C. (2003). Public vs. private health care services demand in italy. Giornale degli Economisti 62, 93123.
  • Follmann, D.A. & Lambert, D. (1989). Generalizing logistic regression by nonparametric mixing. J. Amer. Statist. Assoc. 84, 295300.
  • Goldman, D., Bhattacharya, J., McCaffrey, D., Duan, N., Leibowitz, A., Joyce, G. & Morton, S. (2001). Effect of insurance on mortality in an hiv-positive population in care. J. Amer. Statist. Assoc. 96, 883894.
  • Greene, W.H. (2012). Econometric Analysis. New York: Prentice Hall.
  • Gu, C. (1992). Cross validating non-gaussian data. J. Comput. Graph. Statist. 1, 169179.
  • Gu, C. (2002). Smoothing Spline ANOVA Models. London: Springer-Verlag.
  • Hastie, T. & Tibshirani, R. (1993). Varying-coefficient models. J. R. Statist. Soc. Ser. B Statist. Methodol. 55, 757796.
  • Heagerty, P.J. (1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics 55, 688698.
  • Heagerty, P.J. & Kurland, B.F. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 88, 973985.
  • Heckman, J. (1978). Dummy endogenous variables in a simultaneous equation system. Econometrica 46, 931959.
  • Holly, A., Gardiol, L., Domenighetti, G. & Bisig, B. (1998). An econometric model of health care utilization and health insurance in switzerland. Eur. Econ. Rev. 42, 513522.
  • Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. J. Amer. Statist. Assoc. 73, 805811.
  • Lesperance, M.L. & Kalbfleisch, J.D. (1992). An algorithm for computing the nonparametric MLE of a mixing distribution. J. Amer. Statist. Assoc. 87, 120126.
  • Lindsay, B.G. (1983). The geometry of mixture likelihoods, Part II: the exponential family. Annals Statist. 11, 783792.
  • Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. Ser. B Statist. Methodol. 44, 226233.
  • Maddala, G.S. (1983). Limited Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press.
  • Marra, G. & Radice, R. (2011a). Estimation of a semiparametric recursive bivariate probit model in the presence of endogeneity. Canad. J. Statist. 39, 259279.
  • Marra, G. & Radice, R. (2011b). A flexible instrumental variable approach. Statist. Model. 11, 581279.
  • Marra, G. & Radice, R. (2013). SemiParBIVProbit: Semiparametric Bivariate Probit Modelling. R package version 3.2-8. Available from URL: http://CRAN.R-project.org/package=SemiParBIVProbit [Last accessed 24 August 2013.]
  • Marra, G. & Wood, S.N. (2012). Coverage properties of confidence intervals for generalized additive model components. Scand. J. Statist. 39, 5374.
  • Monfardini, C. & Radice, R. (2008). Testing exogeneity in the bivariate probit model: a monte carlo study. Oxford B. Econ. Statist. 70, 271282.
  • Nelsen, R. (2006). An Introduction to Copulas. New York: Springer.
  • Neuhaus, J.M., Hauck, W.W. & Kalbfleisch, J.D. (1992). The effects of mixture distribution misspecification when fitting mixed-effects logistic models. Biometrika 79, 755762.
  • Papageorgiou, G. & Hinde, J. (2012). Multivariate generalized linear mixed models with semi-nonparametric and smooth nonparametric random effects densities. Statist. Comput. 22, 7992.
  • R Development Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Available from URL: http://www.R-project.org [Last accessed 24 August 2013.]
  • Ruppert, D., Wand, M.P. & Carroll, R.J. (2003). Semiparametric Regression. New York: Cambridge University Press.
  • Silverman, B. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. R. Statist. Soc. Ser. B Statist. Methodol. 47, 152.
  • Verbeke, G. & Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. J. Amer. Statist. Assoc. 91, 217221.
  • Wahba, G. (1983). Bayesian ‘confidence intervals’ for the cross-validated smoothing spline. J. R. Statist. Soc. Ser. B Statist. Methodol. 45, 133150.
  • Wilde, J. (2000). Identification of multiple equation probit models with endogenous dummy regressors. Econom. Lett. 69, 309312.
  • Wood, S.N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Amer. Statist. Assoc. 99, 673686.
  • Wood, S.N. (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, London.
  • Wooldridge, J.M. (2010). Econometric Analysis of Cross Section and Panel Data. Cambridge: MIT Press.