SEARCH

SEARCH BY CITATION

References

  • Beaumont, J.F. & Bocci, C. (2009). A practical bootstrap method for testing hypotheses from survey data. Surv. Methodol. 35, 2535.
  • Bellhouse, D.R. & Rao, J.N.K. (2002). Analysis of domain means in complex surveys. J. Statist. Plann. Inference 102, 4758.
  • Breckling, J.U., Chambers, R.L., Dorfman, A.H., Tan, S.M. & Welsh, A.H. (1994). Maximum likelihood inference from sample survey data. Internat. Stat. Rev. 62, 349363.
  • Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. Internat. Stat. Rev. 51, 2934.
  • Carr, D.B., Littlefield, R.J., Nicholson W.L. & Littlefield, J.S. (1987). Scatterplot matrix techniques for large N. J. Amer. Statist. Assoc. 82, 434436.
  • Chambers, R.L. & Skinner, C.J., eds (2003). Analysis of Survey Data. New York: Wiley
  • Chambers, R.L., Steel, D.G., Wang, S. & Welsh, A.H. (2012). Maximum Likelihood Estimation for Sample Surveys. Boca Raton, FL: Chapman & Hall/CRC Press.
  • Chaudhuri, S., Handcock, M.S. & Rendall, M.S. (2008). Generalized linear models incorporating population level information. J. R. Stat. Soc. Ser. B 70, 311328.
  • Claeskers, G. & Hjort, N.L. (2008). Model selection and model averaging. Cambridge: Cambridge University Press.
  • Cleveland, W.S. (1993). Visualizing Data. Summit, NJ: Hobart Press.
  • Davies, R.B. (1980). Algorithm AS 155: The distribution of a linear combination of χ2 random variables. J. R. Statist. Soc., Ser. C, Appl. Statist. 29, 323333.
  • Farebrother, R.W. (1984). Algorithm AS 204: The distribution of a positive linear combination of χ2 random variables. J. R. Stat. Soc, Ser. C, Appl. Stat. 33, 332339.
  • Fuller, W.A. (1975). Regression analysis for sample surveys. Sankhya C 37, 117132.
  • Fuller, W. (2009). Sampling Statistics. New York: John Wiley and Sons.
  • Hall, P. & Presnell, B. (1999). Intentionally biased bootstrap methods. J. R. Stat. Soc, Ser. B, Stat. Methodol. 61, 143158.
  • Kim, J.K. & Skinner, C.J. (2013). Weighting in survey analysis under informative sampling. Biometrika 100, 385398.
  • Korn E.L. & Graubard B.I. (1998) Scatterplots with survey data. Amer. Statist. 52, 5859
  • Korn E.L. & Graubard B.I. (1999) Analysis of Health Surveys. New York: John Wiley and Sons.
  • Kuonen, D. (1999). Saddlepoint approximations for distributions of quadratic forms in normal variables. Biometrika 86, 929935.
  • Liang, K.Y. & Zeger, S.L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 1322.
  • Lele, S. & Taper, M.L. (2002). A composite likelihood approach to (co)variance components estimation, J. Statist. Plann. Inference 103, 117135.
  • Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using R. New York: Wiley.
  • Lumley, T. (2013). Survey: Analysis of complex survey samples. R package version 3.29-3. Available from URL: http://cran.r-project.org/package=survey
  • Lumley, T. & Scott, A.J. (2013). Partial likelihood ratio tests for the Cox model under complex sampling. Stat. Med. 31, 110123.
  • McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models. London: Chapman Hall.
  • Pfefferman, D., Skinner, C.J., Holmes, D.J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models, J. R. Stat. Soc, Ser. B Stat. Methodol.60(1), 2340.
  • Pfeffermann, D. & Sverchkov, M.Y. (1999). The role of sampling weights when modeling survey data. J. Statist. Plann. Inference 61, 317337.
  • Rabe-Hesketh, S. & Skrondal, A. (2006). Multilevel modelling of complex survey data. J. R. Stat. Soc, Ser. A 169, 805827.
  • Rao, C.R. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Proc. Camb. Phil. Soc. 44, 5057.
  • Rao, J.N.K. (2010). A Weighted Estimating Equations Approach to Inference for Two-level Models from Survey Data Program of the 2010 SSC Annual Meeting, abstract MS-213. Available from URL: http://www.ssc.ca/webfm_send/429
  • Rao, J.N.K. & Scott, A.J. (1981), The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness-of-fit and independence in two-way tables. J. Amer. Statist. Assoc. 76, 221230.
  • Rao, J.N.K. & Scott, A.J. (1984), On chi-squared tests for multi-way tables with cell proportions estimated from survey data. Ann. Statist. 12, 4660.
  • Rao, J.N.K., Scott, A.J. & Skinner, C.J. (1998), Quasi-score tests with survey data. Statist. Sinica 8, 10591070.
  • Rao, J.N.K. & D.R. Thomas (2003). Analysis of categorical response data from complex surveys: An appraisal and update. In Analysis of Survey Data, eds. R.L. Chambers and C.J. Skinner, pp. 85108. New York: Wiley.
  • Roberts, G., Rao, J.N.K. & Kumar, A.J. (1987), Logistic regression analysis of sample survey data. Biometrika 74, 112.
  • Skinner, C.J., Holt, D. & Smith, T.M.F., eds (1989). Analysis of Complex Surveys. Chichester: Wiley.
  • Thomas, D.R. & Rao, J.N.K. (1987). Small-sample comparisons of level and power for simple goodness-of-fit statistics under cluster sampling. J. Amer. Statist. Assoc. 82, 630636.