SEARCH

SEARCH BY CITATION

References

  • Anderson, I. S. , McGreevy, R. L. , and Bilheux, H. Z. (eds.), 2009, Neutron imaging and applications: a reference for the imaging community, Springer, New York.
  • Belgya, T., Kis, Z., Szentmiklósi, L., Kasztovszky, Z., Festa, G., Andreanelli, L., De Pascale, M. P., Pietropaolo, A., Kudejova, P., Schulze, R., Materna, T., and Collaboration, T. A. C., 2008, A new PGAI–NT setup at the NIPS facility of the Budapest Research Reactor, Journal of Radioanalytical and Nuclear Chemistry, 278, 713718.
  • Currie, L., 1968, Limits for qualitative detection and quantitative determination. application to radiochemistry, Analytical Chemistry, 40(3), 586593.
  • Kasztovszky, Z., Biró, K. T., Markó, A., and Dobosi, V., 2008, Cold neutron prompt gamma activation analysis—a non-destructive method for characterization of high silica content chipped stone tools and raw materials, Archaeometry, 50, 1229.
  • Kasztovszky, Z., Panczyk, E., Fedorowicz, W., and Révay, Z., 2005, Comparative archaeometrical study of Roman silver coins by prompt gamma activation analysis and SEM–EDX, Journal of Radioanalytical and Nuclear Chemistry, 265(2), 193199.
  • Kasztovszky, Z., Révay, Z., Belgya, T., and Molnár, G. L., 2000, Non-destructive analysis of metals by prompt-gamma activation analysis at the Budapest Research Reactor, Journal of Radioanalytical and Nuclear Chemistry, 244(2), 379382.
  • Kis, Z., Belgya, T., Szentmiklósi, L., Kasztovszky, Z., Kudejová, P., and Schulze, R., 2008, Prompt gamma activation imaging on ‘black boxes’ in the ‘ANCIENT CHARM’ project, Archaeometriai Muhely, HNM, Budapest, 4160.
  • Koleini, F., de Beer, F., Schoeman, M. H. A., Pikirayi, I., Chirikur, S., Nothnagel, G., and Radebe, J. M., 2012, Efficiency of neutron tomography in visualizing the internal structure of metal artefacts from Mapungubwe museum collection with the aim of conservation, Journal of Cultural Heritage, 13(3), 246253.
  • Loeper-Attia, M.-A., 2007, A proposal to describe reactivated corrosion of archaeological iron objects, in Corrosion of metallic heritage artefacts: investigation, conservation and prediction for long-term behaviour (eds. P. Dillmann , C. Béranger , P. Piccardo , and H. Matthiesen ), 190202, Woodhead Publishing, Cambridge, UK.
  • Matthiesen, H., and Wonsyld, K., 2010, In situ measurement of oxygen consumption to estimate corrosion rates, Corrosion Engineering, Science and Technology, 45, 350356.
  • Neff, D., Réguer, S., Bellot-Gurlet, L., Dillmann, P., and Bertholon, R., 2004, Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms, Journal of Raman Spectroscopy, 35(8–9), 739745.
  • Réguer, S., Dillmann, P., and Mirambet, F., 2007, Buried iron archaeological artefacts: corrosion mechanisms related to the presence of Cl-containing phases, Corrosion Science, 49(6), 27262744.
  • Révay, Z., 2009, Determining elemental composition using prompt gamma activation analysis, Analytical Chemistry, 81, 68516859.
  • Révay, Z., Belgya, T., and Molnár, G. L., 2005, Application of Hypermet-PC in PGAA, Journal of Radioanalytical and Nuclear Chemistry, 265, 261265.
  • Révay, Z., Firestone, R. B., Belgya, T., and Molnár, G. L., 2004, Prompt gamma-ray spectrum catalog, in Handbook of prompt gamma activation analysis with neutron beams (ed. G. L. Molnár ), 173364, Kluwer Academic, Dordrecht.
  • Rimmer, M. B., 2010, Investigating the treatment of chloride-infested archaeological iron objects, Ph.D. thesis, School of History and Archaeology, Cardiff University.
  • Rimmer, M., and Wang, Q., 2010, Assessing the effects of alkaline desalination treatments for archaeological iron using scanning electron microscopy, The British Museum Technical Research Bulletin, 4, 7986.
  • Rimmer, M., Watkinson, D., and Wang, Q., 2012, The efficiency of chloride extraction from archaeological iron objects using deoxygenated alkaline solutions, Studies in Conservation, 57(1), 2941.
  • Rimmer, M., Watkinson, D., and Wang, Q., 2013, The impact of chloride desalination on the corrosion rate of archaeological iron, Studies in Conservation, 58(4), 326337.
  • Rundle, C. C., 2011, A beginners guide to ion-selective electrode measurements, http://www.nico2000.net/book/Beginners%20Guide.pdf (accessed 27 February 2013).
  • Selwyn, L., and Argyropoulos, V., 2006, Chlorine determination in archaeological wrought iron by instrumental neutron activation analysis, Journal of the Canadian Association for Conservation, 31, 312.
  • Selwyn, L. S., Sirois, P. J., and Argyropoulos, V., 1999, The corrosion of excavated archaeological iron with details on weeping and akaganéite, Studies in Conservation, 44, 217232.
  • Stratmann, M., and Hoffmann, K., 1989, In-situ Mössbauer spectroscopic study of reactions within rust layers, Corrosion Science, 29(11/12), 13291352.
  • Szentmiklósi, L., T. Belgya, Z. Révay, and Z. Kis, 2010, Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest Research Reactor, Journal of Radioanalytical and Nuclear Chemistry, 286, 501505.
  • Szentmiklósi, L., Kis, Z., Belgya, T., and Révay, Z., 2013, Prompt gamma activation imaging at the Budapest Research Reactor, in Report of the IAEA Technical Meeting on ‘Catalogue of Products and Services of Research Reactors: Applications of Neutron Beams’, IAEA-F1-TM-40776, 5–7 September 2011 (ed. D. Ridikas ), IAEA, Vienna.
  • Turgoose, S., 1982, Post-excavation changes in iron antiquities, Studies in Conservation, 27, 97101.
  • Turgoose, S., 1985, The corrosion of archaeological iron during burial and treatment, Studies in Conservation, 30, 1318.
  • Watkinson, D., 1983, Degree of mineralization: its significance for the stability and treatment of excavated ironwork, Studies in Conservation, 28, 8590.
  • Watkinson, D., 2010, Measuring effectiveness of washing methods for corrosion control of archaeological iron: problems and challenges, Corrosion Engineering, Science and Technology, 45, 400406.