SEARCH

SEARCH BY CITATION

References

  • 1
    Renton AE, Majounie E, Waite A et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257268.
  • 2
    Gijselinck I, Van Langenhove T, van der Zee J et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 2012; 11: 5465.
  • 3
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72: 245256.
  • 4
    Smith BN, Newhouse S, Shatunov A et al. The C9ORF72 expansion mutation is a common cause of ALS±FTD in Europe and has a single founder. Eur J Hum Genet 2013; 21: 102108.
  • 5
    Majounie E, Renton AE, Mok K et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012; 11: 323330.
  • 6
    Lindquist S, Duno M, Batbayli M et al. Corticobasal and ataxia syndromes widen the spectrumof C9ORF72 hexanucleotide expansion disease. Clin Genet 2013; 83: 279283.
  • 7
    Arighi A, Fumagalli GG, Jacini F et al. Early onset behavioral variant frontotemporal dementia due to the C9ORF72 hexanucleotide repeat expansion: psychiatric clinical presentations. J Alzheimers Dis 2012; 31: 447452.
  • 8
    Pamphlett R, Cheong PL, Trent RJ, Yu B. Transmission of C9orf72 hexanucleotide repeat expansions in sporadic amyotrophic lateral sclerosis: an Australian trio study. NeuroReport 2012; 23: 556559.
  • 9
    Snowden JS, Rollinson S, Thompson JC et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012; 135: 693708.
  • 10
    Takada LT, Pimentel ML, Dejesus-Hernandez M et al. Frontotemporal dementia in a Brazilian kindred with the c9orf72 mutation. Arch Neurol 2012; 69: 11491153.
  • 11
    Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Ann. Rev Neurosci 2006; 29: 259277.
  • 12
    Langenecker SA, Saunders EF, Kade AM, Ransom MT, McInnis MG. Intermediate: cognitive phenotypes in bipolar disorder. J Affect Disord 2010; 122: 285293.
  • 13
    Saluto A, Brussino A, Tassone F et al. An enhanced polymerase chain reaction assay to detect pre- and full mutation alleles of the fragile X mental retardation 1 gene. J Mol Diagn 2005; 7: 605612.
  • 14
    Burke JF, Albin RL, Koeppe RA et al. Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography. Brain 2011; 134: 16471657.
  • 15
    Hyman BT, Phelps CH, Beach TG et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement 2012; 8: 113.
  • 16
    Galvez-Andres A, Blasco-Fontecilla H, Gonzalez-Parra S, Molina JD, Padin JM, Rodriguez RH. Secondary bipolar disorder and Diogenes syndrome in frontotemporal dementia: behavioral improvement with quetiapine and sodium valproate. J Clin Psychopharmacol 2007; 27: 722723.
  • 17
    Pavlovic A, Marley J, Sivakumar V. Development of frontotemporal dementia in a case of bipolar affective disorder: is there a link? BMJ Case Rep 2011; doi:10.1136/bcr.09.2010.3303.
  • 18
    McInnis MG, McMahon FJ, Chase G, Simpson SG, Ross CA, DePaulo JR Jr. Anticipation in bipolar affective disorder. Am J Hum Genet 1993; 53: 385390.
  • 19
    Ashizawa T, Monckton DG, Vaishnav S, Patel BJ, Voskova A, Caskey CT. Instability of the expanded (CTG)n repeats in the myotonin protein kinase gene in cultured lymphoblastoid cell lines from patients with myotonic dystrophy. Genomics 1996; 36: 4753.
  • 20
    Morales F, Couto JM, Higham CF et al. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum Mol Genet 2012; 21: 35583567.
  • 21
    Savica R, Adeli A, Vemuri P et al. Characterization of a family with c9FTD/ALS associated with the GGGGCC repeat expansion in C9ORF72. Arch Neurol 2012; 69: 11641169.
  • 22
    Nopoulos PC, Aylward EH, Ross CA et al. Smaller intracranial volume in prodromal Huntington's disease: evidence for abnormal neurodevelopment. Brain 2011; 134: 137142.