Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis

Authors


Corresponding author. E-mail: car1607@tamu.edu

Abstract

Despite divergent evolutionary histories, Neotropical cichlids (Cichlidae) and Nearctic sunfishes (Centrarchidae) appear to have similar functional morphotypes and occupy similar ecological niches. We applied an integrative approach analyzing morphological traits, stomach contents, and stable isotope ratios (δ13C, δ15N) to investigate whether local assemblages of cichlids (Venezuela, Peru) and centrarchids (Texas) reveal one-to-one patterns of morphological and ecological convergence. Multivariate ordinations performed on diet and morphology datasets identified a broad overlap between cichlid and centrarchid assemblages. The functional morphology of the two groups has diversified in a convergent manner within the confines of ram-suction modes of prey ingestion. Both groups had the same set of ecomorph types that corresponded to the same trophic niches, including substrate-sifting invertivores, epibenthic invertebrate gleaners, and piscivores; the one exception was a molluscivorous sunfish, comprising a niche that was not represented in the two cichlid assemblages. Estimates of trophic positions based on stable isotope analysis revealed convergent vertical trophic structure; with few exceptions, fishes with similar morphologies had similar trophic positions. Large-bodied piscivores had highest trophic positions, whereas small and medium-bodied generalists and invertivores had low to intermediate trophic positions. Consistent patterns of ecomorphological convergence in these two perciform groups provide strong evidence for adaptation involving constrains in functional morphology associated with feeding. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109, 146–164.

Ancillary