• Black, N. (1996). Why we need observational studies to evaluate the effectiveness of health care. British Medical Journal 312, 12151218.
  • Breslow, N. E. (1972). Discussion of the paper by D. R. Cox. J R Statist, Soc B 34, 216217.
  • Bretagnolle, J. and Huber-Carol, C. (1985). Sous-estimation des contrastes due a l'oubli de variables pertinentes dans le modele de Cox pour des durees de survie avec censure. C.R.A.S. 300, 359363.
  • Chastang, C., Byar, D., and Piantadosi, S. (1988). A quantitative study of the bias in estimating the treatment effect caused by omitting a balanced covariate in survival models. Statistics in Medicine 7, 12431255.
  • Ellis, J. M., Tan, H. K., Gilbert, R. E., Muller, D. P., Henley, W. E., Moy, R., Pumphrey, R., Ani, C., Davies, S., Edwards, V., Green, H., Salt, A. and Logan, S. (2008). Supplementation with antioxidants and folinic acid for children with Down syndrome: Randomised controlled trial. British Medical Journal 336, 594597.
  • Gail, M., Wieand, S. and Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431444.
  • Ghani, A. C., Henley, W. E., Donnelly, C. A., Mayer, S., and Anderson, R. M. (2001). Comparison of the effectiveness of non-nucleoside reverse transcriptase inhibitor-containing and protease inhibitor-containing regimens using observational databases. AIDS 15, 11331142.
  • Groenwold, R. H., Nelson, D. B., Nichol, K. L., Hoes, A. W., and Hak, E. (2010). Sensitivity analyses to estimate the potential impact of unmeasured confounding in causal research. International Journal of Epidemiology 39, 107117.
  • Henderson, R., Shimakura, S., and Gorst, D. (2002). Modelling spatial variation in leukaemia survival data. Journal of the American Statistical Association 97, 965972.
  • Hernandez, A. V., Eijkemans, M. J. and Steyerberg, E. W. (2006). Randomized controlled trials with time-to-event outcomes: How much does prespecified covariate adjustment increase power? Annals of Epidemiology 16, 4148.
  • Klungel, O. H., Martens, E. P., Psaty, B. M., Grobbee, D. E., Sullivan, S. D., Stricker, B. H., Leufkens, H. G., and de Boer, A. (2004). Methods to assess intended effects of drug treatment in observational studies are reviewed. Journal of Clinical Epidemiology 57, 12231231.
  • Lin, D. Y., Psaty, B. M., and Kronmal, R. A. (1998). Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics 54, 948963.
  • Lin, D. Y. and Wei, L. J. (1989). The robust inference for the Cox proportional hazards model. Journal of the American Statistics 84, 207224.
  • Rosenbaum, P. R. (1991). Discussing Hidden bias in observational studies. Annals of Internal Medicine 115, 901905.
  • Satten, G. A. and Datta, S. (2001). The Kaplan–Meier Estimator as an inverse-probability-of-censoring weighted average. American Statistician 55, 207210.
  • Tannen, R. L., Weiner, M. G. and Xie, D. (2009). Use of primary care electronic medical record database in drug efficacy research on cardiovascular outcomes: comparison of database and randomised controlled trial findings. British Medical Journal338, b81.
  • VanderWeele, T. J. (2008). Sensitivity analysis: distributional assumptions and confounding assumptions. Biometrics 64, 645649.