SEARCH

SEARCH BY CITATION

References

  • Alonzo, T. A., Pepe, M. S., and Lumley, T. (2003). Estimating disease prevalence in two-phase studies. Biostatistics 4, 313326.
  • Alonzo, T. A. and Pepe, M. S. (2005). Assessing accuracy of a continuous screening test in the presence of verification bias. Journal of the Royal Statistical Society, Series C 54, 173190.
  • Brenner, H. and Gefeller, O. (1993). Use of the positive predictive value to correct for disease misclassification in epidemiologic studies. American Journal of Epidemiology 136, 10071015.
  • Breslow, N. E. and Holubkov, R. (1997). Maximum-likelihood estimation of logistic regression parameters under two-phase, outcome-dependent sampling. Journal of the Royal Statistical Society, Series B 59, 447461.
  • Duffy, S. W., Warwick, J., Williams, A. R. W., Keshavarz, H., Kaffashian, F., Rohan, T. E., Nili, F., and Sadeghi-Hassanabadi, A. (2003). A simple model for potential use with a misclassified binary outcome in epidemiology. Journal of Epidemiology and Community Health 58, 712717.
  • Espeland, M. A. and Hui, S. L. (1987). A general approach to analyzing epidemiologic data that contains misclassification errors. Biometrics 43, 10011012.
  • Follmann, D. A. On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial. Journal of the American Statistical Association 95, 11011109.
  • Kuchenhoff, H., Mwalili, S. M., and Lesaffre, E. (2006). A general method for dealing with misclassification in regression: the misclassification SIMEX. Biometrics 62, 8596.
  • Kuk, A. Y., Li, J., and Rush, A. J. (2010). Recursive subsetting to identify patients in the STAR*D: A method to enhance the accuracy of early prediction of treatment outcome and to inform personalized care. Journal of Clinical Psychiatry 71, 15021508.
  • Mathew, T. and Sinha, B. K. (2001). Optimal designs for binary data under logistic regression. Journal of Statistical Planning and Inference 93, 295307.
  • Morrissey, M. and Spiegelman, D. (1999). Matrix method for estimationg odds ratios with misclassified exposure data: extensions and comparisons. Biometrics 55, 338344.
  • Nansel, T., Iannotti, R., and Liu, A. (2012). Clinical-integrated behaviorial intervention for families of youth with Type I diabetes: randomized clinical trial. Pediatrics 129, e866e873.
  • Neyman, J. (1938). Contribution to the theory of sampling human populations. Journal of the American Statistical Association 33, 101116.
  • Prentice, R. L. and Pyke, R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66, 403411.
  • Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association 89, 846866.
  • Rose, S. and van der Laan, M. J. (2011). A targeted maximum-likelihood estimator for two-stage designs. The International Journal of Biostatistics 7, Article 17.
  • Sansbury, L. B., Wanke, K., Albert, P. S., Kahle, L., Schatzkin, A.,and Lanza, E. (2090). The effect of strict adherence to a high-fiber, high-fruit and -vegetable, and low-fat eating pattern on adenoma recurrence. American Journal of Epidemiology 170, 576584.
  • Sitter, R. R. and Wu, C. F. J. (1993). Optimal designs for binary response experiments: Fieller, D, and A criteria. Scandinavian Journal of Statistics 20, 329341.
  • Thisted, R. A. (1988). Elements of Statistical Computing: Numerical Computation. New York, NY: Chapman and Hall.
  • The Juvenile Diabetes Research Foundation Continuous Monitoring Study Group. (2008). Continuous glucose monitoring and intensive treatment of type I diabetes. New England Journal of Medicine 359, 14641475.
  • Wolfram, S. (1999). Mathematica: A System for Doing Mathematics by Computer, 2nd edition. New York, NY: Addison-Wesley.