SEARCH

SEARCH BY CITATION

References

  • Carvalho, C. M. and Scott, J. G. (2009). Objective Bayesian model selection in Gaussian graphical models. Biometrika 96, 497512.
  • Dawid, A. P. and Lauritzen, S. L. (1993). Hyper markov laws in the statistical analysis of decomposable graphical models. The Annals of Statistics 21, 12721317.
  • DiCiccio, T. J., Kass, R. E., Raftery, A., and Wasserman, L. (1997). Computing Bayes factors by combining simulation and asymptotic approximations. Journal of the American Statistical Association 92, 903915.
  • Dimas, A. S. Deutsch, S., Stranger, B. E., Montgomery, S. B., Borel, C., Attar-Cohen, H., Ingle, C., Beazley, C., Gutierrez Arcelus, M., Sekowska, M., Gagnebin, M., Nisbett, J., Deloukas, P., Dermitzakis, E. T., and Antonarakis, S. E. (2009). Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 12461250.
  • Ding, J., Gudjonsson, J. E., Liang, L., Stuart, P. E., Li, Y., et al. (2010). Gene expression in skin and lymphoblastoid cells: Refined statistical method reveals extensive overlap in cis-eQTL signals. American Journal of Human Genetics 87, 779789.
  • Flutre, T., Wen, X., Pritchard, J. K., and Stephens, M. (2013). A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genetics 9, e1003486.
  • Fridley, B. L. (2009). Bayesian variable and model selection methods for genetic association studies. Genetic Epidemiology 33, 2737.
  • Guan, Y. and Stephens, M. (2011). Bayesian variable selection regression for genome-wide association studies, and other large-scale problems. Annals of Applied Statistics 5, 17801815.
  • Howie, B. N., Donnelly, P., and Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics 5, e1000529.
  • Johnson, V. E. (2005). Bayes factors based on test statistics. Journal of the Royal Statistical Society, Series B 67, 689701.
  • Johnson, V. E. (2008). Properties of bayes factors based on test statistics. Scandinavian Journal of Statistics 35, 354368.
  • Kass, R. E. and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association 90, 773795.
  • Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mixtures of g Priors for Bayesian Variable Selection. Journal of the American Statistical Association 103, 410423.
  • Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian Variable Selection in Linear Regression. Journal of the American Statistical Association 83, 10231032.
  • Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D.-Y., Pollack, J. R., and Wang, P. (2010). Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Annals of Applied Statistics 4, 5377.
  • Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika 83, 251266.
  • Rothman, A. J., Levina, E., and Zhu, J. (2010). Sparse Multivariate Regression With Covariance Estimation. Journal of Computational and Graphical Statistics 19, 947962.
  • Saville, B. R. and Herring, A. H. (2009). Testing random effects in the linear mixed model using approximate bayes factors. Biometrics 65, 369376.
  • Schwarz, G. E. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461464.
  • Scott-Boyer, M. P., Imholte, G. C., Tayeb, A., Labbe, A., Deschepper, C. F., and Gottardo, R. (2012). An integrated hierarchical Bayesian model for multivariate eQTL mapping. Statistical Applications in Genetics and Molecular Biology 11, (published online).
  • Servin, B. and Stephens, M. (2007). Imputation-based analysis of association studies: Candidate regions and quantitative traits. PLoS Genetics 3, e114.
  • Stephens, M. and Balding, D. J. (2009). Bayesian statistical methods for genetic association studies. Nature Review Genetics 10, 68190.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58, 267288.
  • Tibshirani, R., Saunders, M., Rosset, R., Zhu, J., and Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society, Series B 67, 91108.
  • Veyrieras, J., Kudaravalli, S., Kim, S. Y., Dermitzakis, E. T., Gilad, Y., Stephens, M. and Pritchard, J. K. (2008). High-resolution mapping of expression-qtls yields insight into human gene regulation. PLoS Genetics 4, e1000214.
  • Wakefield, J. (2009). Bayes factors for genome-wide association studies: Comparison with p-values. Genetic Epidemiology 33, 7986.
  • Wen, X. and Stephens, M. (in press). Bayesian methods for genetic association analysis with heterogeneous subgroups: From meta-analysis to gene-environment interactions. Annals of Applied Statistics
  • Wilson, M. A., Iversen, E. S., Clyde, M. A., Schmidler, S. C., and Schildkraut, J. M. (2010). Bayesian model search and multilevel inference for snp association studies. Annals of Applied Statistics 4, 13421364.
  • Wu, T., Chen, Y., Hastie, T., Sobel, E., and Lange, K. (2009). Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25, 714721.
  • Xu, C., Wang, X., Li, Z., and Xu, S. (2009). Mapping QTL for multiple traits using Bayesian statistics. Genetics Research 91, 2337.
  • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68, 4967.