SEARCH

SEARCH BY CITATION

References

  • Angrist, J., Imbens, G., and Rubin, D. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91, 444455.
  • Brito, C. (2010). Instrument sets. In Heuristics, Probability and Causality: A Tribute to Judea Pearl, R. Dechter, H. Geffner, and J. Halpern (eds), 295307. London: College Publications.
  • Brito, C. and Pearl, J. (2002). A new identification condition for recursive models with correlated errors. Structural Equation Modeling 9, 459474.
  • Carrell, S. E., Fullerton, R. L., and West, J. E. (2009). Does your cohort matter? Estimating peer effects in college achievement. Journal of Labor Economics 27, 439464.
  • Centola, D. (2010). The spread of behavior in an online social network. Science 329, 11941197.
  • Christakis, N. A. and Fowler, J. H. (2007). The spread of obesity in a large social network over 32 years. New England Journal of Medicine 357, 370379.
  • Christakis, N. A. and Fowler, J. H. (2008). Dynamics of smoking behavior in a large social network. New England Journal of Medicine 358, 22492258.
  • Didelez, V. and Sheehan, N. (2007). Mendelian randomization as an instrumental variable approach to causal inference. Statistical Methods for Medical Research 16, 309330.
  • Didelez, V., Meng, S., and Sheehan, N. A. (2010). Assumptions of IV methods for observational epidemiology. Statistical Science 25, 2240.
  • Elwert, F. (2013). Graphical causal models. In Handbook of Causal Analysis for Social Research, S. Morgan (ed), 245273. Dodrecht, Netherlands: Springer.
  • Elwert, F. and Christakis, N. A. (2008). Wives and ex-wives: A new test for homogamy bias in the widowhood effect. Demography 45, 851873.
  • Fletcher, J. M. (2008). Social interactions and smoking: Evidence using multiple student cohorts, instrumental variables, and school fixed effects. Health Economics 19, 466484.
  • Fowler, J. H. and Christakis, N. A. (2010). Cooperative behavior cascades in human social networks. PNAS: Proceedings of the National Academy of Sciences 107, 53345338.
  • Hernán, M. and Robins, J. (2006). Instruments for causal inference—An epidemiologist's dream? Epidemiology 17, 360372.
  • Lasky-Su, J., Lyon, H. N., Emilsson, V., Heid, I. M., Molony, C., Raby, B. A., Lazarus, R., Klanderman, B., Soto-Quiros, M. E., Avila, L., Silverman, E. K., Thorleifsson, G., Thorsteinsdottir, U., Kronenberg, F., Vollmert, C., Illig, T., Fox, C. S., Levy, D., Laird, N., Ding, X., McQueen, M. B., Butler, J., Ardlie, K., Papoutsakis, C., Dedoussis, G., O'Donnell, C. J., Wichmann, H. E., Celedón, J. C., Schadt, E., Hirschhorn, J., Weiss, S. T., Stefansson, K., and Lange, C. (2008). On the replication of genetic associations: Timing can be everything. The American Journal of Human Genetics 82, 849858.
  • O'Malley, A. J. and Christakis, N. A. (2011). Longitudinal analysis of large social networks: Estimating the effect of health traits on changes in friendship ties. Statistics in Medicine 30, 950964.
  • Palmer, T. M., Lawlor, D. A., Harbord, R. M., Sheehan, N. A., Tobias, J. H., Timpson, N. J., Smith, G. D., and Sterne, J. A. C. (2012). Using multiple genetic variants as instrumental variables for modifiable risk factors. The International Journal of Biostatistics 21, 223242.
  • Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan Kaufmann.
  • Pearl, J. (1995). Causal diagrams for empirical research. Biometrika 82, 669710.
  • Pearl, J. (2009). Causality, 2nd edition. New York: Cambridge University Press.
  • Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38, 904909.
  • Richardson, T. S. and Robins, J. M. (2013). Single world intervention graphs (swigs): A unification of the counterfactual and graphical approaches to causality. Working Paper Number 128, Center for Statistics and the Social Sciences, University of Washington, (146 pages), http://www.csss.washington.edu/Papers/wp128.pdf.
  • Rosenquist, J. N., Fowler, J. H., Murabito, J., and Christakis, N. A. (2010). The spread of alcohol consumption behavior in a large social network. Annals of Internal Medicine 152, 426433.
  • Sacerdote, B. (2001). Peer effects with random assignment: results for Dartmouth roommates. Quarterly Journal of Economics 116, 681704.
  • Shalizi, C. R. and Thomas, A. C. (2011). Homophily and contagion are generically confounded in observational social network studies. Sociological Methods and Research 40, 211239.
  • Speliotes, E., Willer, C., Berndt, S., Monda, K., Thorleifsson, G., Jackson, A., et al. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics 42, 937948.
  • Stock, J., Wright, J., and Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. Journal of Business and Economics Statistics 20, 518527.
  • VanderWeele, T. J., Ogburn, E. L., and   Tchetgen Tchetgen, E. J. (2012). Why and when flawed social network analyses still yield valid tests of no contagion. Statistics, Politics, and Policy 3, doi:10.1515/2151–7509.1050.
  • Vansteelandt, S., Bowden, J., Babanezhad, M., and Goetghebeur, E. (2011). On instrumental variables estimation of causal odds ratios. Statistical Science 26, 403422.
  • Verma, T. and Pearl, J. (1988). Causal networks: Semantics and expressiveness. In Proceedings of the Fourth Workshop on Uncertainty in Artificial Intelligence, Mountain View, CA: Association for Uncertainty in Artificial Intelligence, 352359.
  • White, H. (1982). Instrumental variables regression with independent observations. Econometrica 50, 483499.
  • Wing, R. R. and Jeffery, R. W. (1999). Benefits of recruiting participants with friends and increasing social support for weight loss and maintenance. Journal of Consulting and Clinical Psychology 67, 132138.