SEARCH

SEARCH BY CITATION

References

  • Aggarwal, B.B., Sethi, G., Baladandayuthapani, V., Krishnan, S. & Shishodia, S. (2007) Targeting cell signaling pathways for drug discovery: an old lock needs a new key. Journal of Cellular Biochemistry, 102, 580592.
  • Banerji, U. (2009) Heat shock protein 90 as a drug target: some like it hot. Clinical Cancer Research, 15, 914.
  • Banerji, U., Judson, I. & Workman, P. (2003) The clinical applications of heat shock protein inhibitors in cancer - present and future. Current Cancer Drug Targets, 3, 385390.
  • Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P. & Rosen, N. (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. Journal of Biological Chemistry, 277, 3985839866.
  • Boll, B., Eltaib, F., Reiners, K.S., von Tresckow, B., Tawadros, S., Simhadri, V.R., Burrows, F.J., Lundgren, K., Hansen, H.P., Engert, A. & von Strandmann, E.P. (2009) Heat shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kappaB and sensitizes Hodgkin's lymphoma cells for natural killer cell-mediated cytotoxicity. Clinical Cancer Research, 15, 51085116.
  • Chiosis, G., Lucas, B., Huezo, H., Solit, D., Basso, A. & Rosen, N. (2003) Development of purine-scaffold small molecule inhibitors of Hsp90. Current Cancer Drug Targets, 3, 371376.
  • Chou, T.C. (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research, 70, 440446.
  • Chou, T.C. & Talalay, P. (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 2755.
  • Clarke, P.A., Hostein, I., Banerji, U., Stefano, F.D., Maloney, A., Walton, M., Judson, I. & Workman, P. (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene, 19, 41254133.
  • Druker, B.J. (2002) STI571 (Gleevec) as a paradigm for cancer therapy. Trends in Molecular Medicine, 8, S14S18.
  • Druker, B.J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G.M., Fanning, S., Zimmermann, J. & Lydon, N.B. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Medicine, 2, 561566.
  • Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Kantarjian, H., Capdeville, R., Ohno-Jones, S. & Sawyers, C.L. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine, 344, 10311037.
  • Eccles, S.A., Massey, A., Raynaud, F.I., Sharp, S.Y., Box, G., Valenti, M., Patterson, L., de Haven Brandon, A., Gowan, S., Boxall, F., Aherne, W., Rowlands, M., Hayes, A., Martins, V., Urban, F., Boxall, K., Prodromou, C., Pearl, L., James, K., Matthews, T.P., Cheung, K.M., Kalusa, A., Jones, K., McDonald, E., Barril, X., Brough, P.A., Cansfield, J.E., Dymock, B., Drysdale, M.J., Finch, H., Howes, R., Hubbard, R.E., Surgenor, A., Webb, P., Wood, M., Wright, L. & Workman, P. (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Research, 68, 28502860.
  • Fiskus, W., Buckley, K., Rao, R., Mandawat, A., Yang, Y., Joshi, R., Wang, Y., Balusu, R., Chen, J., Koul, S., Joshi, A., Upadhyay, S., Atadja, P. & Bhalla, K.N. (2009) Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biology & Therapy, 8, 939950.
  • Flandrin, P., Guyotat, D., Duval, A., Cornillon, J., Tavernier, E., Nadal, N. & Campos, L. (2008) Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress and Chaperones, 13, 357364.
  • Franke, T.F., Kaplan, D.R. & Cantley, L.C. (1997) PI3K: downstream AKTion blocks apoptosis. Cell, 88, 435437.
  • George, P., Bali, P., Cohen, P., Tao, J., Guo, F., Sigua, C., Vishvanath, A., Fiskus, W., Scuto, A., Annavarapu, S., Moscinski, L. & Bhalla, K. (2004) Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Research, 64, 36453652.
  • George, P., Bali, P., Annavarapu, S., Scuto, A., Fiskus, W., Guo, F., Sigua, C., Sondarva, G., Moscinski, L., Atadja, P. & Bhalla, K. (2005) Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood, 105, 17681776.
  • Gilliland, D.G. (2002) Molecular genetics of human leukemias: new insights into therapy. Seminars in Hematology, 39, 611.
  • Grandage, V.L., Gale, R.E., Linch, D.C. & Khwaja, A. (2005) PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia, 19, 586594.
  • Hertlein, E., Wagner, A.J., Jones, J., Lin, T.S., Maddocks, K.J., Towns, W.H. 3rd, Goettl, V.M., Zhang, X., Jarjoura, D., Raymond, C.A., West, D.A., Croce, C.M., Byrd, J.C. & Johnson, A.J. (2010) 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood, 116, 4553.
  • Jego, G., Hazoume, A., Seigneuric, R. & Garrido, C. (2010) Targeting heat shock proteins in cancer. Cancer Letters. Epub ahead of print. http://dx.doi.org/10.1016/j.canlet.2010.10.014
  • Kamal, A., Ramulu, P., Srinivas, O. & Ramesh, G. (2003) Synthesis and DNA-binding affinity of A-C8/C-C2 alkoxyamido-linked pyrrolo[2,1-c][1,4]benzodiazepine dimers. Bioorganic & Medicinal Chemistry Letters, 13, 39553958.
  • Lancet, J.E., Gojo, I., Burton, M., Quinn, M., Tighe, S.M., Kersey, K., Zhong, Z., Albitar, M.X., Bhalla, K., Hannah, A.L. & Baer, M.R. (2010) Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia, 24, 699705.
  • Lundgren, K., Zhang, H., Brekken, J., Huser, N., Powell, R.E., Timple, N., Busch, D.J., Neely, L., Sensintaffar, J.L., Yang, Y.C., McKenzie, A., Friedman, J., Scannevin, R., Kamal, A., Hong, K., Kasibhatla, S.R., Boehm, M.F. & Burrows, F.J. (2009) BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Molecular Cancer Therapeutics, 8, 921929.
  • Mesa, R.A., Loegering, D., Powell, H.L., Flatten, K., Arlander, S.J., Dai, N.T., Heldebrant, M.P., Vroman, B.T., Smith, B.D., Karp, J.E., Eyck, C.J., Erlichman, C., Kaufmann, S.H. & Karnitz, L.M. (2005) Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood, 106, 318327.
  • Mosser, D.D. & Morimoto, R.I. (2004) Molecular chaperones and the stress of oncogenesis. Oncogene, 23, 29072918.
  • Neckers, L. (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends in molecular medicine, 8, S55S61.
  • Ozes, O.N., Mayo, L.D., Gustin, J.A., Pfeffer, S.R., Pfeffer, L.M. & Donner, D.B. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 401, 8285.
  • Pratt, W.B. & Toft, D.O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental biology and medicine (Maywood), 228, 111133.
  • Randolph, T.R. (2000a) Acute promyelocytic leukemia (AML-M3)–Part 1: Pathophysiology, clinical diagnosis, and differentiation therapy. Clinical and Laboratory Science, 13, 98105.
  • Randolph, T.R. (2000b) Acute promyelocytic leukemia (AML-M3)–Part 2: molecular defect, DNA diagnosis, and proposed models of leukemogenesis and differentiation therapy. Clinical and Laboratory Science, 13, 106116.
  • Reikvam, H., Ersvaer, E. & Bruserud, O. (2009) Heat shock protein 90 - a potential target in the treatment of human acute myelogenous leukemia. Current Cancer Drug Targets, 9, 761776.
  • Reikvam, H., Hatfield, K.J., Ersvaer, E., Hovland, R., Skavland, J., Gjertsen, B.T., Petersen, K. & Bruserud, O. (2012) Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status–consequences and potentials for pharmacological intervention. British Journal of Haematology, 156, 468480.
  • Romashkova, J.A. & Makarov, S.S. (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 401, 8690.
  • Sato, S., Fujita, N. & Tsuruo, T. (2000) Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97, 1083210837.
  • Scheid, M.P., Lauener, R.W. & Duronio, V. (1995) Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylinositol 3-OH-kinase inhibitors reveal a difference in signalling between interleukin-3 and granulocyte-macrophage colony stimulating factor. The Biochemical journal, 312, 159162.
  • Smith, J. & Workman, P. (2007) Targeting the cancer chaperone HSP90. Drug Discovery Today, 4, 219227.
  • Solit, D.B. & Chiosis, G. (2008) Development and application of Hsp90 inhibitors. Drug Discovery Today, 13, 3843.
  • Solit, D.B., Basso, A.D., Olshen, A.B., Scher, H.I. & Rosen, N. (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Research, 63, 21392144.
  • Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Current Opinion in Pharmacology, 8, 370374.
  • Tallman, M.S., Andersen, J.W., Schiffer, C.A., Appelbaum, F.R., Feusner, J.H., Ogden, A., Shepherd, L., Willman, C., Bloomfield, C.D., Rowe, J.M. & Wiernik, P.H. (1997) All-trans-retinoic acid in acute promyelocytic leukemia. New England Journal of Medicine, 337, 10211028.
  • Uehara, Y. (2003) Natural product origins of Hsp90 inhibitors. Current Cancer Drug Targets, 3, 325330.
  • Usmani, S.Z., Bona, R. & Li, Z. (2009) 17 AAG for HSP90 inhibition in cancer–from bench to bedside. Current Molecular Medicine, 9, 654664.
  • Walsby, E., Pearce, L., Burnett, A.K., Fegan, C. & Pepper, C. (2012) The Hsp90 inhibitor NVP-AUY922-AG inhibits NF-kappaB signaling, overcomes microenvironmental cytoprotection and is highly synergistic with fludarabine in primary CLL cells. Oncotarget, 3, 525534.
  • Waza, M., Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Tanaka, F., Inukai, A., Doyu, M. & Sobue, G. (2005) 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nature Medicine, 11, 10881095.
  • Whitesell, L., Bagatell, R. & Falsey, R. (2003) The stress response: implications for the clinical development of hsp90 inhibitors. Current Cancer Drug Targets, 3, 349358.
  • Workman, P. (2003) Overview: translating Hsp90 biology into Hsp90 drugs. Current Cancer Drug Targets, 3, 297300.
  • Yao, Q., Weigel, B. & Kersey, J. (2007) Synergism between etoposide and 17-AAG in leukemia cells: critical roles for Hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clinical Cancer Research, 13, 15911600.
  • Young, J.C., Barral, J.M. & Ulrich Hartl, F. (2003) More than folding: localized functions of cytosolic chaperones. Trends in Biochemical Sciences, 28, 541547.
  • Yufu, Y., Nishimura, J. & Nawata, H. (1992) High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leukemia Research, 16, 597605.