SEARCH

SEARCH BY CITATION

References

  • Bechger, T. M., Verstralen, H. H. F. M., & Verhelst, N. D. (2002). Equivalent linear logistic test models. Psychometrika, 67, 123136. doi:10.1007/BF02294712
  • Box, G. E. P., & Draper, N. R. (1987). Empirical model building and response surfaces. New York: Wiley.
  • Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153168. doi:10.1007/BF02294533
  • Bruner, J. S., & Postman, L. (1949). On the perception of incongruity: A paradigm. Journal of Personality, 18, 206223. doi:10.1111/j.1467-6494.1949.tb01241.x
  • Butter, R., De Boeck, P., & Verhelst, N. (1998). An item response model with internal restrictions on item difficulty. Psychometrika, 63, 4763. doi:10.1007/BF02295436
  • Catchpole, E. A., & Morgan, B. J. T. (1997). Detecting parameter redundancy. Biometrika, 84, 187196. doi:10.1093/biomet/84.1.187
  • de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115130. doi:10.3102/1076998607309474
  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179199. doi:10.1007/s11336-011-9207-7
  • Doornik, J. A. (2002). Object-oriented matrix programming using Ox (Version 3.1) [Computer software]. London, UK: Timberlake Consultants Press.
  • Festinger, L. (1957). A theory of cognitive dissonance. Evanston, IL: Row, Peterson.
  • Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87111. doi:10.1111/j.2044-8317.1985.tb00818.x
    Direct Link:
  • Fu, J., & Li, Y. (2007, April). An integrative review of cognitively diagnostic psychometric models. Paper presented at the annual meeting of the National Council on Measurement in Education, Chicago.
  • Gibbons, R. D., & Hedeker, D. (1992). Full-information item bifactor analysis. Psychometrika, 57, 423436. doi:10.1007/BF02295430
  • Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231. doi:10.1093/biomet/61.2.215
  • Haberman, S. J., & von Davier, M. (2006) Some notes on models for cognitively based skills diagnosis. In C. R. Rao & S. Sinharay (Eds.), Psychometrics, handbook of statistics Vol. 26. (pp. 10311038). Amsterdam, The Netherlands: Elsevier.
  • Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 301321. doi:10.1111/j.1745-3984.1989.tb00336.x
  • Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log linear models with latent variables. Psychometrika, 74, 191210. doi:10.1007/s11336-008-9089-5
  • Hsieh, C., Xu, X., & von Davier, M (2009). Variance estimation for NAEP data using a comprehensive resampling-based approach: An application of cognitive diagnostic models. In M. von Davier & D. Hastedt (Eds.), IERI monograph series: Issues and methodologies in large scale assessments, Vol. 2. (pp. 161174). Hamburg and Princeton, NJ: IER Institute.
  • Huebner, A. (2010). An overview of recent developments in cognitive diagnostic computer adaptive assessments. Practical Assessment, Research & Evaluation, 15(3), 17. Retrieved from: http://pareonline.net/pdf/v15n3.pdf
  • Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258272. doi:10.1177/01466210122032064
  • Kunina-Habenicht, O., Rupp, A. A., & Wilhelm, O. (2009). A practical illustration of multidimensional diagnostic skills profiling: Comparing results from confirmatory factor analysis and diagnostic classification models. Studies in Educational Evaluation, 35(2–3), 6470. doi:10.1016/j.stueduc.2009.10.003
  • Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 2, 99120. doi:10.3102/10769986002002099
  • Maris, G., & Bechger, T. M. (2004). Equivalent MIRID models. Psychometrika, 69, 627639. doi:10.1007/BF02289859
  • Maris, G., & Bechger, T. (2009). Equivalent diagnostic classification models. Measurement: Interdisciplinary Research & Perspectives, 7(1), 4146. doi:10.1080/15366360802715478
  • Muthén, L. K., & Muthén, B. O. (1998–2010). Mplus user's guide (6th ed.). Los Angeles: Muthén & Muthén.
  • Rijmen, F. (2010). Formal relations and an empirical comparison between the bi-factor, the testlet, and a second-order multidimensional IRT model. Journal of Educational Measurement, 47, 361372. doi:10.1111/j.1745-3984.2010.00118.x
  • Rijmen, F., & De Boeck, P. (2005). A relation between a between-item multidimensional IRT model and the mixture-Rasch model. Psychometrika, 70, 481496. doi:10.1007/s11336-002-1007-7
  • Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York: Guilford Press.
  • Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher, 39(2), 142151. doi:10.3102/0013189X10363170
  • San Martín, E., Jara, A., Rolin, J. M., & Mouchart, M. (2011). On the Bayesian nonparametric generalization of IRT-type models. Psychometrika, 76(3), 385409. doi:10.1007/s11336-011-9213-9
  • Sinharay, S., & Haberman, S. J. (2008). How much can we reliably know about what examinees know? Measurement: Interdisciplinary Research & Perspectives, 6, 4649. doi:10.1080/15366360802715486
  • Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408. doi:10.1007/BF02294363
  • von Davier, M. (2005). A general diagnostic model applied to language testing data, Research Report RR-05-16. ETS, Princeton, NJ: ETS.
  • von Davier, M. (2007). Mixture general diagnostic models, Research Report, RR-07-32. Princeton, NJ: ETS.
  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287307. doi:10.1348/000711007X193957
  • von Davier, M. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models. Measurement: Interdisciplinary Research and Perspectives, 7(1), 6774. doi:10.1080/15366360902799851
  • von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 828. Retrieved from http://www.psychologie-aktuell.com/fileadmin/download/ptam/1-2010/02_vonDavier.pdf
  • von Davier, M., DiBello, L., & Yamamoto, K. (2008) Reporting test outcomes using models for cognitive diagnosis. In J. Hartig, E. Klieme & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 151176). Toronto, Canada: Hogrefe & Huber.
  • von Davier, M., & von Davier, A. (2007). A unified approach to IRT scale linkage and scale transformations. Methodology, 3(3), 115124. doi:10.1027/1614-2241.3.3.115
  • von Davier, M., Xu, X., & Carstensen, C. H. (2011). Measuring growth in a longitudinal large scale assessment with a general latent variable model. Psychometrika, 76(2), 318336. doi:10.1007/S11336-011-9202-Z
  • von Davier, M., & Yamamoto, K. (2004). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman Invitational Conference, ETS, Philadelphia, PA.
  • Xu, X., & von Davier, M. (2008a). Fitting the structured general diagnostic model to NAEP data. Research Report RR-08-27. ETS, Princeton, NJ: ETS.
  • Xu, X., & von Davier, M. (2008b). Linking with the general diagnostic model. Research Report, RR-08-08. ETS, Princeton, NJ: ETS.
  • Yung, Y.-F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113128. doi:10.1007/BF02294531