SEARCH

SEARCH BY CITATION

References

  • Alexander, R. A., & Govern, D. M. (1994). A new and simpler approximation for ANOVA under variance heterogeneity. Journal of Educational Statistics, 19, 91101.
  • Brown, M. B., & Forsythe, A. B. (1974). The small sample behavior of some statistics which test the equality of several means. Technometrics, 16, 129132.
  • Clinch, J. J., & Keselman, H. J. (1982). Parametric alternatives to the analysis of variance. Journal of Educational Statistics, 7, 207214.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd ed.). Hillsdale, NJ: Erlbaum.
  • Coombs, W. T., Algina, J., & Oltman, D. O. (1996). Univariate and multivariate omnibus hypothesis tests selected to control type I error rates when population variances are not necessarily equal. Review of Educational Research, 66, 137179.
  • Cribbie, R. A., Fiksenbaum, L., Keselman, H. J., & Wilcox, R. R. (2012). Effect of non-normality on test statistics for one-way independent groups designs. British Journal of Mathematical and Statistical Psychology, 65, 5673.
  • De Beuckelaer, A. (1996). A closer examination on some parametric alternatives to the ANOVA F-test. Statistical Papers, 37, 291305.
  • Dijkstra, J. B., & Werter, P. S. P. J. (1981). Testing the equality of several means when the population variances are unequal. Communications in Statistics: Simulation and Computation, 10, 557569.
  • Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed-effects analysis of variance and covariance. Review of Educational Research, 42, 237288.
  • Grissom, R. J. (2000). Heterogeneity of variance in clinical data. Journal of Consulting and Clinical Psychology, 68, 155165.
  • Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992). Summarizing Monte Carlo results in methodological research: The one and two-factor fixed effects ANOVA cases. Journal of Educational Statistics, 17, 315339.
  • Howell, D. C. (2010). Statistical methods for psychology. (7th ed.). Belmont, CA: Wadsworth.
  • James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika, 38, 324329.
  • Jan, S. L., & Shieh, G. (2011). Optimal sample sizes for Welch's test under various allocation and cost considerations. Behavior Research Methods, 43, 10141022.
  • Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., … Levin, J. R. (1998). Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA and ANCOVA analyses. Review of Educational Research, 68, 350386.
  • Keselman, H. J., Rogan, J. C., & Feir-Walsh, B. J. (1977). An evaluation of some non-parametric and parametric tests for location equality. British Journal of Mathematical and Statistical Psychology, 30, 213221.
    Direct Link:
  • Kirk, R. E. (1995). Experimental design: Procedures for the behavioral sciences (3rd ed.). Pacific Grove, CA: Brooks/Cole.
  • Kohr, R. L., & Games, P. A. (1974). Robustness of the analysis of variance, the Welch procedure and a Box procedure to heterogeneous variances. Journal of Experimental Education, 43, 169.
  • Krutchkoff, R. G. (1986). One-way fixed effects analysis of variance when the error variances may be unequal. Journal of Statistical Computation and Simulation, 30, 259271.
  • Kulinskaya, E., Staudte, R. G., & Gao, H. (2003). Power approximations in testing for unequal means in a one-way ANOVA weighted for unequal variances. Communications in Statistics: Theory and Methods, 32, 23532371.
  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models. (5th ed.). New York: McGraw-Hill.
  • Levy, K. J. (1978a). Some empirical power results associated with Welch's robust analysis of variance technique. Journal of Statistical Computation and Simulation, 8, 4348.
  • Levy, K. J. (1978b). An empirical comparison of the ANOVA F-test with alternatives which are more robust against heterogeneity of variance. Journal of Statistical Computation and Simulation, 8, 4957.
  • Lix, L. M., & Keselman, H. J. (1998). To trim or not to trim: Tests of location equality under heteroscedasticity and nonnormality. Educational and Psychological Measurement, 58, 409429.
  • Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66, 579620.
  • Luh, W. M., & Guo, J. H. (2011). Developing the non-centrality parameter for calculating the group sample of the heterogeneous one-way fixed-effect ANOVA. Journal of Experimental Education, 79, 5363.
  • R Development Core Team (2006). R: A language and environment for statistical computing [computer software and manual]. Vienna: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org
  • Rogan, J. C., & Keselman, H. J. (1977). Is the ANOVA F-test robust to variance heterogeneity when sample sizes are equal? American Educational Research Journal, 14, 493498.
  • SAS Institute (2011). SAS/IML User's Guide, Version 9.2. Cary, NC: SAS Institute.
  • Scheffé, H. (1959). The analysis of variance. New York: Wiley.
  • Schneider, R. J., & Penfield, D. A. (1997). Alexander and Govern's approximation: Providing an alternative to ANOVA under variance heterogeneity. Journal of Experimental Education, 65, 271286.
  • Tomarken, A. J., & Serlin, R. C. (1986). Comparison of ANOVA alternatives under variance heterogeneity and specific noncentrality structures. Psychological Bulletin, 99, 9099.
  • Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29, 350362.
  • Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38, 330336.
  • Wilcox, R. R. (2003). Applying contemporary statistical techniques. San Diego, CA: Academic Press.
  • Wilcox, R. R., Charlin, V. L., & Thompson, K. L. (1986). New Monte Carlo results on the robustness of the ANOVA F, W, and F* statistics. Communications in Statistics: Simulation and Computation, 15, 933943.
  • Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Measures of central tendency. Psychological Methods, 8, 254274.
  • Zimmerman, D. W. (2000). Statistical significance levels of nonparametric tests biased by heterogeneous variances of treatment groups. Journal of General Psychology, 127, 354364.