SEARCH

SEARCH BY CITATION

References

  • Arminger, G., & Stein, P. (1997). Finite mixtures of covariance structure models with regressors. Sociological Methods & Research, 26(2), 148182. doi:10.1177/0049124197026002002
  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: a structural equation modeling perspective. Hoboken, NJ: Wiley. doi:10.1002/0471746096.fmatter
  • Bolt, D. M., Piper, M. E., Theobald, W. E., & Baker, T. B. (2012). Why two smoking cessation agents work better than one: Role of craving suppression. Journal of Consulting and Clinical Psychology, 80, 5465. doi:10.1037/a0026366
  • Brown, C. H., Indurkhya, A., & Kellam, S. G. (2000). Power calculations for data missing by design: Applications to a follow-up study of lead exposure and attention. Journal of the American Statistical Association, 95(450), 383395. doi:10.1080/01621459.2000.10474208
  • Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issues of partial measurement invariance. Psychological Bulletin, 105, 456466. doi:10.1037/0033-2909.105.3.456
  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indices for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9, 233255. doi:10.1207/S15328007SEM0902_5
  • Cole, D. A., Martin, N. C., & Steiger, J. H. (2005). Empirical and conceptual problems with longitudinal trait-state models: Introducing a trait-state-occasion model. Psychological Methods, 10, 320. doi:10.1037/1082-989X.10.1.3
  • Duncan, S. C., Duncan, T. E., & Hops, H. (1996). Analysis of longitudinal data within accelerated longitudinal designs. Psychological Methods, 1(3), 236248. doi:10.1037/1082-989X.1.3.236
  • Graham, J. W., Hofer, S. M., & MacKinnon, D. P. (1996). Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures. Multivariate Behavioral Research, 31(2), 197218. doi:10.1207/s15327906mbr3102_3
  • Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409426. doi:10.1007/BF02291366
  • Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. Duncan (Eds.), Structural equation models in the social sciences (pp. 85112). New York: Seminar Press.
  • Kaplan, D. (2009). Structural equation modeling: foundations and extensions. Thousand Oaks, CA: Sage.
  • Kim, S.-Y. (2012). Sample size requirements in single- and multi-phase growth mixture models: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 19, 457476. doi:10.1080/10705511.2012.687672
  • LaGrange, B., Cole, D. A., Jacquez, F., Ciesla, J., Dallaire, D., Pineda, A., Truss, A., Weitlauf, A., Tilghman-Osborne, C., & Felton, J. (2011). Disentangling the prospective relations between maladaptive cognitions and depressive symptoms. Journal of Abnormal Psychology, 120, 511527. doi:10.1037/a0024685
  • Little, T. D., Schnabel, K. U., & Baumert, J. (2000). Longitudinal and multi-group modeling with missing data. Retrieved from http://www.smallwaters.com/whitepapers/longmiss/Longitudinal%20and%20multi-group%20modeling%20with%20missing%20data.pdf
  • Loeber, R., Farrington, D. P., Stouthamer-Loeber, M., & White, H. R. (2008). Violence and serious theft: developmental course and origins from childhood to adulthood. New York: Routledge Press.
  • McArdle, J. J. (1986). Latent variable growth within behavior genetic models. Behavior Genetics, 16, 163200. doi:10.1007/BF01065485
  • McArdle, J. J. (1989). A structural modeling experiment with multiple growth functions. In R. Kanfer, P. L. Ackerman & R. Cudeck (Eds.), Abilities, motivation, and methodology: the Minnesota symposium on learning and individual differences (pp. 71117). Hillsdale, NJ: Erlbaum.
  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.
  • Meredith, W., & Tisak, J. (1984, June). ‘Tuckerizing’ curves. Paper presented at the annual meeting of the Psychometric Society, Santa Barbara, CA.
  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107122. doi:10.1007/BF02294746
  • Mun, E.-Y., Fitzgerald, H. E., von Eye, A., Puttler, L. I., & Zucker, R. A. (2001). Temperamental characteristics as predictors of externalizing and internalizing child behavior problems in the contexts of high and low parental psychopathology. Infant Mental Health Journal, 22(3), 393415. doi:10.1002/imhj.1008
  • Muthén, B. (1989). Multiple-group structural modelling with non-normal continuous variables. British Journal of Mathematical and Statistical Psychology, 42, 5562. doi:10.1111/j.2044-8317.1989.tb01114.x
    Direct Link:
  • Muthén, B. (2001a). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 133). Mahwah, NJ: Erlbaum.
  • Muthén, B. (2001b). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: new opportunities for latent class/latent growth modeling. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 291322). Washington, DC: American Psychological Association.
  • Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81117. doi:10.2333/bhmk.29.81
  • Muthén, B. (2004). Latent variable analysis: growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345368). Newbury Park, CA: Sage.
  • Muthén, B., & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: multiple-group and growth modeling in Mplus. Retrieved from http://statmodel2.com/download/webnotes/CatMGLong.pdf
  • Muthén, B., & Muthén, L. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9, 599620. doi:10.1207/S15328007SEM0904_8
  • Muthén, L., & Muthén, B. (2010). Mplus: Statistical analysis with latent variables user's guide 6.0. Los Angeles: Muthén & Muthén.
  • Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463469. doi:10.1111/j.0006-341X.1999.00463.x
  • Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht, Boston, and London: Kluwer Academic.
  • Palardy, G. J. (2008). Differential school effects among low, middle, and high social class composition schools: A multiple group, multilevel latent growth curve analysis. School Effectiveness and School Improvement: An International Journal of Research, Policy and Practice, 19(1), 2149. doi:10.1080/09243450801936845
  • Piper, M. E., Schlam, T. R., Cook, J. W., Sheffer, M. A., Smith, S. S., Loh, W. Y., Bolt, D. M., Kim, S.-Y., Kaye, J. T., Hefner, K. R, & Baker, T. B. (2011). Tobacco withdrawal components and their relations with cessation success. Psychopharmacology (Berl), 216(4), 569578. doi:10.1007/s00213-011-2250-3
  • Piper, M. E., Smith, S. S., Schlam, T. R., Fiore, M. C., Jorenby, D. E., Fraser, D., & Baker, T. B. (2009). A randomized placebo-controlled clinical trial of five smoking cessation pharmacotherapies. Archives of General Psychiatry, 66, 12531262. doi:10.1001/archgenpsychiatry.2009.142
  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: applications and data analysis methods. Thousand Oaks, CA: Sage.
  • Rivera, P., & Satorra, A. (2002). Analyzing group differences: a comparison of SEM approaches. In G. A. Marcoulides & I. Moustaki (Eds.), Latent variable and latent structure models (pp. 85104). Mahwah, NJ: Lawrence Erlbaum.
  • Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In R. D. H. Heijmans, D. S. G. Pollock & A. Satorra (Eds.), Innovations in multivariate statistical analysis (pp. 233247). London: Kluwer Academic.
  • Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507514. doi:10.1007/BF02296192
  • Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. British Journal of Mathematical and Statistical Psychology, 27, 229239. doi: 11/j.2044-8317.1974.tb00543.x
    Direct Link:
  • Stone, A. A., & Shiffman, S. (1994). Ecological momentary assessment (EMA) in behavioral medicine. Annals of Behavioral Medicine, 16(3), 199202.
  • Tueller, S., & Lubke, G. (2010). Evaluation of structural equation mixture models: Parameter estimates and correct class assignment. Structural Equation Modeling: A Multidisciplinary Journal, 17, 165192. doi:10.1080/10705511003659318
  • Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 469. doi:10.1177/109442810031002
  • Vermunt, J. K., & Magidson, J. (2005). Structural equation models: mixture models. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (pp. 19221927). Hoboken, NJ: Wiley. doi:10.1002/0470013192
  • Wang, J., Siegal, H. A., Falck, R. S., Carlson, R. G., & Rahman, A. (1999). Evaluation of HIV risk reduction intervention programs via latent growth model. Evaluation Review, 23(6), 648662. doi:10.1177/0193841X9902300604
  • White, H. R., Lee, C., Mun, E.-Y., & Loeber, R. (2012). Developmental patterns of alcohol use in relation to the persistence and desistance of serious violent offending among African American and Caucasian young men. Criminology, 50(2), 391426. doi:10.1111/j.1745-9125.2011.00263.x