SEARCH

SEARCH BY CITATION

References

  • Béguin, A. A., & Glas, C. A. W. (2001). MCMC estimation of multidimensional IRT models. Psychometrika, 66, 541562. doi:10.1007/BF02296195
  • Böckenholt, U., Barlas, S., & van der Heijden, P. G. M. (2009). Do randomized response designs eliminate response bias? An empirical study of non-compliance behavior. Journal of Applied Econometrics, 24, 377392.
  • Böckenholt, U. & van derHeijden, P. G. M. (2007). Item randomized-response models for measuring noncompliance: Risk-return perceptions, social influences, and self-protective responses. Psychometrika, 72, 245262.
  • Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27, 395414.
  • Boruch, R. F. (1971). Maintaining confidentiality of data in educational research: A systematic analysis. American Psychologist, 6, 413430.
  • Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434455.
  • Brown, S. A., Christiansen, B. A., & Goldman, M. S. (1987). The alcohol expectancy questionnaire: An instrument for the assessment of adolescent and adult alcohol expectancies. Journal of Studies on Alcohol, 48, 483491.
  • Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika, 75, 3357.
  • Chambers, R. P. (2010). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 129.
  • Chaudhuri, A., & Mukerjee, R. (1988). Randomized response: Theory and techniques. New York: Marcel Dekker.
  • Chib, S., & Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85, 347361.
  • DeSchrijver, A. (2012). Sample survey on sensitive topics: Investigating respondents’ understanding and trust in alternative versions of the randomized response technique. Journal of Research Practice, 8(1), M1.
  • Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75, 474497.
  • Fox, J.-P. (2005). Multilevel IRT using dichotomous and polytomous items. British Journal of Mathematical and Statistical Psychology, 58, 145172.
  • Fox, J.-P. (2010). Bayesian item response modeling: Theory and applications. New York: Springer.
  • Fox, J.-P., & Wyrick, C. (2008). A mixed effects randomized item response model. Journal of Educational and Behavioral Statistics, 33, 389415.
  • Gilks, W. R. (1996) Full conditional distributions. In W. R. Gilks, S. Richardsonn, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 7588). London, UK: Chapman & Hall.
  • Greenberg B. G., Abul-Ela A., Simmons W. R., & Horvitz D. G. (1969). The unrelated question randomized response model: theoretical framework. Journal of the American Statistical Association, 64, 520539.
  • Horvitz, D. G., Shah, B. V., & Simmons, W. R. (1967). The unrelated question randomized response model. Proceedings of the American Statistical Association: Social Statistics Section 12, 6572.
  • Jackman, S. (2001). Multidimensional analysis of roll call data via Bayesian simulation: Identification, estimation, inference, and model checking. Political Analysis, 9, 227241.
  • Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. Upper Saddle River, NJ: Prentice Hall.
  • Lensvelt-Mulders, G. J. L. M., Hox, J. J., van derHeijden, P. G. M., & Maas, C. J. M. (2005). Meta-analysis of randomized response research: Thirty-five years of validation. Sociological Methods and Research, 33, 319348.
  • Lopes, H. F., & West, M. (2004). Bayesian model assessment in factor analysis. Statistica Sinica, 14, 4167.
  • Maddock, J. E., Laforge, R. G., Rossi, J. S., & O'Hare, T. (2001). The college alcohol problems scale. Addictive Behaviors, 26, 385398.
  • O'Hare, T. (1997). Measuring problem drinking in first time offenders: Development and validation of the College Alcohol Problem Scale (CAPS). Journal of Substance Abuse Treatment, 14, 383387.
  • Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.
  • Schafer, J. L. & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics, 11, 437457.
  • Scheers, N. J. & Dayton, C. (1988). Covariate randomized response models. Journal of the American Statistical Association, 83, 969974.
  • Sheng, Y. (2010). Bayesian estimation of MIRT models with general and specific latent traits in Matlab. Journal of Statistical Software, 34(3), 127.
  • Sheng, Y., & Wikle, C. K. (2007). Comparing multiunidimensional and unidimensional item response theory models. Educational and Psychological Measurement, 67, 899919.
  • Shi, J.-Q., & Lee, S.-Y. (1998). Bayesian sampling-based approach for factor analysis models with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology, 51, 233252.
    Direct Link:
  • Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis. London, UK: Sage.
  • Song, X.-Y., & Lee, S.-Y. (2001). Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations. British Journal of Mathematical and Statistical Psychology, 54, 237263.
  • Warner S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60, 6369.
  • Werner, M. J., Walker, M. D., & Greene, J. W. (1995). Relation of alcohol expectancies to changes in problem drinking among college students. Archives of Pediatrics & Adolescent Medicine, 149, 733739.
  • Wirth R. J. & Edwards M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12, 5879.
  • Yao, L., & Boughton, K. A. (2007). A multidimensional item response modeling approach for improving subscale proficiency estimation and classification. Applied Psychological Measurement, 31, 83105.