• Barlow, R., Bartholomew, D., Bremner, J., & Brunk, H. (1972). Statistical inference under order restrictions. New York, NY: John Wiley.
  • Bartlett, M. (1957). A comment on D. V. Lindley's statistical paradox. Biometrika, 44, 533534.
  • Berger, J. O., & Mortera, J. (1999). Default Bayes factors for nonnested hypothesis testing. Journal of the American Statistical Association, 94, 542554. doi:10.1080/01621459.1999.10474149
  • Berger, J. O., & Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109122. doi:10.1080/01621459.1996.10476668
  • Berger, J. O., & Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankhyā, Series B, 60, 118.
  • Berger, J. O., & Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison (with discussion). In P. Lahiri (Ed.), Model Selection, Institute of Mathematical Statistics Lecture Notes 38 (pp. 135207). Beachwood, OH: Institute of Mathematical Statistics.
  • Berger, J. O., & Pericchi, L. R. (2004). Training samples in objective Bayesian model selection. Annals of Statistics, 32(3), 841869. doi:10.1214/009053604000000229
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
  • Harville, D. A. (2008). Matrix algebra from a statistician's perspective. New York, NY: Springer.
  • Hoijtink, H. (2011). Informative hypotheses: Theory and practice for behavioral and social scientists. New York, NY: Chapman & Hall/CRC.
  • Hoijtink, H., Klugkist, I., & Boelen, P. A. (2008). Bayesian evaluation of informative hypotheses. New York, NY: Springer.
  • Jeffreys, H. (1961). Theory of probability (3rd ed.). New York, NY: Oxford University Press.
  • Judge, G. G., Griffiths, W. E., Carter Hill, R., & Lee T.-C. (1980). The theory and practice of econometrics. New York, NY: John Wiley.
  • Kass R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795. doi:10.2307/2291091
  • Klugkist, I., & Hoijtink, H. (2007). The Bayes factor for inequality and about equality constrained models. Computational Statistics and Data Analysis, 51, 63676379. doi:10.1016/j.csda.2007.01.024
  • Klugkist, I., Laudy, O., & Hoijtink, H. (2005). Inequality constrained analysis of variance: A Bayesian approach. Psychological Methods, 10, 477493. doi:10.1037/1082-989X.10.4.477
  • Lempers, F. B. (1972). Posterior probabilities of alternative linear models. Rotterdam, The Netherlands: Rotterdam University Press.
  • Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103, 410423. doi:10.1198/016214507000001337
  • Lindley, D. V. (1957). A statistical paradox. Biometrika, 44, 187192. doi:10.2307/2333251
  • Moreno, E., Bertolino, F., & Racugno W. (1998). An intrinsic limiting procedure for model selection and hypotheses testing. Journal of the American Statistical Association, 93, 14511460. doi:10.2307/2670059
  • Mulder, J., Hoijtink, H., & de Leeuw, C. (2012). BIEMS: A Fortran 90 program for calculating Bayes factors for inequality and equality constrained model. Journal of Statistical Software, 46.
  • Mulder, J., Hoijtink, H., & Klugkist, I. (2010). Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors. Journal of Statistical Planning and Inference, 140, 887906. doi:10.1016/j.jspi.2009.09.022
  • Mulder, J., Klugkist, I., de Schoot, A., Meeus, W., Selfhout, M., & Hoijtink, H. (2009). Bayesian model selection of informative hypotheses for repeated measurements. Journal of Mathematical Psychology, 53, 530546. doi:10.1016/
  • O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of the Royal Statistical Society, Series B, 57, 99138.
  • Robertson, T., Wright, F. T. & Dykstra, R. (1988). Order restricted statistical inference. New York, NY: Wiley.
  • Silvapulle, M. J., & Sen, P. K. (2004). Constrained statistical inference: Inequality order and shape restrictions (2nd ed.). Hoboken, NJ: John Wiley.
  • Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. K. Goel & A. Zellner (Eds.). Bayesian inference and decision techniques: Essays in honor of Bruno de Finetti (pp. 233243). Amsterdam, The Netherlands: North-Holland/Elsevier.