SEARCH

SEARCH BY CITATION

References

  • Adam PJ, Berry J, Loader JA, Tyson KL, Craggs G, Smith P et al. (2003). Arylamine N-acetyltransferase-1 is highly expressed in breast cancers and conveys enhanced growth and resistance to etoposide in vitro. Mol Cancer Res 1: 826835.
  • Andres HH, Kolb HJ, Schreiber RJ, Weiss L (1983). Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver. Biochim Biophys Acta 746: 193201.
  • Andres HH, Klem AJ, Schopfer LM, Harrison JK, Weber WW (1988). On the active site of liver acetyl-CoA. Arylamine N-acetyltransferase from rapid acetylator rabbits (III/J). J Biol Chem 263: 75217527.
  • Brooke EW, Davies SG, Mulvaney AW, Pompeo F, Sim E, Vickers RJ (2003a). An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases. Bioorg Med Chem 11: 12271234.
  • Brooke EW, Davies SG, Mulvaney AW, Okada M, Pompeo F, Sim E et al. (2003b). Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs). Bioorg Med Chem Lett 13: 25272530.
  • Butcher NJ, Minchin RF (2012). Arylamine N-acetyltransferase 1: a novel drug target in cancer development. Pharmacol Rev 64: 147165.
  • Butcher NJ, Boukouvala S, Sim E, Minchin RF (2002). Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J 2: 3042.
  • Butcher NJ, Tetlow NL, Cheung C, Broadhurst GM, Minchin RF (2007). Induction of human arylamine N-acetyltransferase type I by androgens in human prostate cancer cells. Cancer Res 67: 8592.
  • Dupret JM, Grant DM (1992). Site-directed mutagenesis of recombinant human arylamine N-acetyltransferase expressed in Escherichia coli. Evidence for direct involvement of Cys68 in the catalytic mechanism of polymorphic human NAT2. J Biol Chem 267: 73817385.
  • Ellard GA, Mitchison DA, Girling DJ, Nunn AJ, Fox W (1978). The hepatic toxicity of isoniazid among rapid and slow acetylators of the drug. Am Rev Respir Dis 118: 628629.
  • Fretland AJ, Doll MA, Gray K, Feng Y, Hein DW (1997). Cloning, sequencing, and recombinant expression of NAT1, NAT2, and NAT3 derived from the C3H/HeJ (rapid) and A/HeJ (slow) acetylator inbred mouse: functional characterization of the activation and deactivation of aromatic amine carcinogens. Toxicol Appl Pharmacol 142: 360366.
  • Fullam E, Westwood IM, Anderton MC, Lowe ED, Sim E, Noble ME (2008). Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J Mol Biol 375: 178191.
  • Gouet P, Courcelle E (2002). ENDscript: a workflow to display sequence and structure information. Bioinformatics 18: 767768.
  • Grant DM, Blum M, Beer M, Meyer UA (1991). Monomorphic and polymorphic human arylamine N-acetyltransferases: a comparison of liver isozymes and expressed products of two cloned genes. Mol Pharmacol 39: 184191.
  • Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A et al. (1997). Human acetyltransferase polymorphisms. Mutat Res 376: 6170.
  • Hanna PE (1994). N-acetyltransferases, O-acetyltransferases, and N,O-acetyltransferases: enzymology and bioactivation. Adv Pharmacol 27: 401430.
  • Hein DW (2002). Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 506–507: 6577.
  • Hein DW (2006). N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25: 16491658.
  • Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ et al. (1993). Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis 14: 16331638.
  • Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH et al. (2000). Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9: 2942.
  • Hickman D, Pope J, Patil SD, Fakis G, Smelt V, Stanley LA et al. (1998). Expression of arylamine N-acetyltransferase in human intestine. Gut 42: 402409.
  • Holton SJ, Dairou J, Sandy J, Rodrigues-Lima F, Dupret JM, Noble ME et al. (2005). Structure of Mesorhizobium loti arylamine N-acetyltransferase 1. Acta Crystallograph Sect F Struct Biol Cryst Commun 61 (Pt 1): 1416.
  • Hughes NC, Janezic SA, McQueen KL, Jewett MA, Castranio T, Bell DA et al. (1998). Identification and characterization of variant alleles of human acetyltransferase NAT1 with defective function using p-aminosalicylate as an in-vivo and in-vitro probe. Pharmacogenetics 8: 5566.
  • Kawamura A, Graham J, Mushtaq A, Tsiftsoglou SA, Vath GM, Hanna PE et al. (2005). Eukaryotic arylamine N-acetyltransferase. Investigation of substrate specificity by high-throughput screening. Biochem Pharmacol 69: 347359.
  • Laurieri N, Crawford MH, Kawamura A, Westwood IM, Robinson J, Fletcher AM et al. (2010). Small molecule colorimetric probes for specific detection of human arylamine N-acetyltransferase 1, a potential breast cancer biomarker. J Am Chem Soc 132: 32383239.
  • Lin HJ, Probst-Hensch NM, Hughes NC, Sakamoto GT, Louie AD, Kau IH et al. (1998). Variants of N-acetyltransferase NAT1 and a case-control study of colorectal adenomas. Pharmacogenetics 8: 269281.
  • Liu F, Zhang N, Zhou X, Hanna PE, Wagner CR, Koepp DM et al. (2006). Arylamine N-acetyltransferase aggregation and constitutive ubiquitylation. J Mol Biol 361: 482492.
  • Metushi IG, Cai P, Zhu X, Nakagawa T, Uetrecht JP (2011). A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin Pharmacol Ther 89: 911914.
  • Payton M, Mushtaq A, Yu TW, Wu LJ, Sinclair J, Sim E (2001). Eubacterial arylamine N-acetyltransferases – identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues. Microbiology 147 (Pt 5): 11371147.
  • Russell AJ, Westwood IM, Crawford MH, Robinson J, Kawamura A, Redfield C et al. (2009). Selective small molecule inhibitors of the potential breast cancer marker, human arylamine N-acetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2. Bioorg Med Chem 17: 905918.
  • Sandy J, Mushtaq A, Kawamura A, Sinclair J, Sim E, Noble M (2002). The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis – an enzyme which inactivates the anti-tubercular drug, isoniazid. J Mol Biol 318: 10711083.
  • Sandy J, Holton S, Fullam E, Sim E, Noble M (2005a). Binding of the anti-tubercular drug isoniazid to the arylamine N-acetyltransferase protein from Mycobacterium smegmatis. Protein Sci 14: 775782.
  • Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble ME, Sim E (2005b). Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 390 (Pt 1): 115123.
  • Sim E, Payton M, Noble M, Minchin R (2000). An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet 9: 24352441.
  • Sim E, Sandy J, Evangelopoulos D, Fullam E, Bhakta S, Westwood I et al. (2008a). Arylamine N-acetyltransferases in mycobacteria. Curr Drug Metab 9: 510519.
  • Sim E, Walters K, Boukouvala S (2008b). Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev 40: 479510.
  • Sinclair J, Sim E (1997). A fragment consisting of the first 204 amino-terminal amino acids of human arylamine N-acetyltransferase one (NAT1) and the first transacetylation step of catalysis. Biochem Pharmacol 53: 1116.
  • Sinclair JC, Sandy J, Delgoda R, Sim E, Noble ME (2000). Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol 7: 560564.
  • Tiang JM, Butcher NJ, Minchin RF (2010). Small molecule inhibition of arylamine N-acetyltransferase Type I inhibits proliferation and invasiveness of MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 393: 95100.
  • Vagena E, Fakis G, Boukouvala S (2008). Arylamine N-acetyltransferases in prokaryotic and eukaryotic genomes: a survey of public databases. Curr Drug Metab 9: 628660.
  • Walker K, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B (2009). Genetic polymorphism in N-Acetyltransferase (NAT): population distribution of NAT1 and NAT2 activity. J Toxicol Environ Health B Crit Rev 12: 440472.
  • Walraven JM, Trent JO, Hein DW (2007). Computational and experimental analyses of mammalian arylamine N-acetyltransferase structure and function. Drug Metab Dispos 35: 10011007.
  • Walraven JM, Trent JO, Hein DW (2008a). Structure-function analyses of single nucleotide polymorphisms in human N-acetyltransferase 1. Drug Metab Rev 40: 169184.
  • Walraven JM, Zang Y, Trent JO, Hein DW (2008b). Structure/function evaluations of single nucleotide polymorphisms in human N-acetyltransferase 2. Curr Drug Metab 9: 471486.
  • Wang H, Vath GM, Gleason KJ, Hanna PE, Wagner CR (2004). Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Biochemistry 43: 82348246.
  • Wang H, Liu L, Hanna PE, Wagner CR (2005). Catalytic mechanism of hamster arylamine N-acetyltransferase 2. Biochemistry 44: 1129511306.
  • Watanabe M, Sofuni T, Nohmi T (1992). Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. J Biol Chem 267: 84298436.
  • Westwood IM, Holton SJ, Rodrigues-Lima F, Dupret JM, Bhakta S, Noble ME et al. (2005). Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine N-acetyltransferase. Biochem J 385 (Pt 2): 605612.
  • Westwood IM, Kawamura A, Fullam E, Russell AJ, Davies SG, Sim E (2006). Structure and mechanism of arylamine N-acetyltransferases. Curr Top Med Chem 6: 16411654.
  • Westwood IM, Bhakta S, Russell AJ, Fullam E, Anderton MC, Kawamura A et al. (2010). Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell 1: 8295.
  • Westwood IM, Kawamura A, Russell AJ, Sandy J, Davies SG, Sim E (2011). Novel small-molecule inhibitors of arylamine N-acetyltransferases: drug discovery by high-throughput screening. Comb Chem High Throughput Screen 14: 117124.
  • Wu H, Dombrovsky L, Tempel W, Martin F, Loppnau P, Goodfellow GH et al. (2007). Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases. J Biol Chem 282: 3018930197.
  • Zhang N, Liu L, Liu F, Wagner CR, Hanna PE, Walters KJ (2006). NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity. J Mol Biol 363: 188200.