SEARCH

SEARCH BY CITATION

References

  • Adhihetty PJ, Beal MF (2008). Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromolecular Med 10: 275290.
  • Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ and CGTP Collaborators (2013). The Concise Guide to PHARMACOLOGY 2013/14: Overview. Br J Pharmacol 170: 14491867.
  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138: 155175.
  • Anderson DW, Schray RC, Duester G, Schneider JS (2011). Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Res 1408: 8187.
  • Ares-Santos S, Granado N, Moratalla R (2013). The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med 273: 437453.
  • Banks WA, Gertler A, Solomon G, Niv-Spector L, Shpilman M, Yi X et al. (2011). Principles of strategic drug delivery to the brain (SDDB): development of anorectic and orexigenic analogs of leptin. Physiol Behav 105: 145149.
  • Baseri B, Choi JJ, Deffieux T, Samiotaki G, Tung YS, Olumolade O et al. (2012). Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles. Phys Med Biol 57: N65N81.
  • Callaghan RC, Cunningham JK, Sykes J, Kish SJ (2012). Increased risk of Parkinson's disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 120: 3540.
  • Capsoni S, Marinelli S, Ceci M, Vignone D, Amato G, Malerba F et al. (2012). Intranasal ‘painless’ human nerve growth factors slows amyloid neurodegeneration and prevents memory deficits in App X PS1 mice. Plos ONE 7: e37555.
  • Chapman CD, Frey WH 2nd, Craft S, Danielyan L, Hallschmid M, Schiöth HB et al. (2012). Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. [Epub ahead of print].
  • Cheng X, Wang Z, Yang J, Ma M, Lu T, Xu G et al. (2011). Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurol Res 33: 675680.
  • Coelho-Santos V, Gonçalves J, Fontes-Ribeiro C, Silva AP (2012). Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway. J Neuroinflammation 9: 103.
  • Collins MA, Neafsey EJ (2012). Neuroinflammatory pathways in binge alcohol-induced neuronal degeneration: oxidative stress cascade involving aquaporin, brain edema, and phospholipase A2 activation. Neurotox Res 1: 7078.
  • Dackis C, O'Brien C (2005). Neurobiology of addiction: treatment and public policy ramifications. Nat Neurosci 8: 14311436.
  • Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY (2002). Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397: 162171.
  • DiCaudo C, Riverol M, Mundiñano IC, Ordoñez C, Hernández M, Marcilla I et al. (2012). Chronic levodopa administration followed by a washout period increased number and induced phenotypic changes in striatal dopaminergic cells in MPTP-monkeys. Plos ONE 7: e50842.
  • Dugas JC, Mandemakers W, Rogers M, Ibrahim A, Daneman R, Barres BA (2008). A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J Neurosci 33: 82948305.
  • Ezquerra L, Herradon G, Nguyen T, Silos-Santiago I, Deuel TF (2005). MK, a newly discovered regulator of the renin-angiotensin pathway in mouse aorta: significance of the pleiotrophin/midkine developmental gene family in angiotensin II signaling. Biochem Biophys Res Commun 333: 636643.
  • Ezquerra L, Perez-Garcia C, Garrido E, Diez-Fernandez C, Deuel TF, Alguacil LF et al. (2007). Morphine and yohimbine regulate midkine gene expression in the rat hippocampus. Eur J Pharmacol 557: 147150.
  • Fahn S, Sulzer D (2004). Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 1: 139154.
  • Fang Q, Mok PY, Thomas AE, Haddad DJ, Saini SA, Clifford BT et al. (2013). Pleiotrophin gene therapy for peripheral ischemia: evaluation of full-length and truncated gene variants. Plos ONE 8: e61413.
  • Ferrario JE, Taravini IR, Mourlevat S, Stefano A, Delfino MA, Raisman-Vozari R et al. (2004). Differential gene expression induced by chronic levodopa treatment in the striatum of rats with lesions of the nigrostriatal system. J Neurochem 90: 13481358.
  • Ferrucci M, Pasquali L, Paparelli A, Ruggieri S, Fornai F (2008). Pathways of methamphetamine toxicity. Ann N Y Acad Sci 1139: 177185.
  • Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O'Donnell KC et al. (2013). Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A 110: 636641.
  • Flatscher-Bader T, Wilce PA (2008). Impact of alcohol abuse on protein expression of midkine and excitatory amino acid transporter 1 in the human prefrontal cortex. Alcohol Clin Exp Res 32: 18491858.
  • Fu A, Zhao Z, Gao F, Zhang M (2013). cellular uptake mechanism and therapeutic utility of a novel peptide in targeted-delivery of proteins into neuronal cells. Pharm Res 30: 21082117.
  • Fukada M, Fujikawa A, Chow JP, Ikematsu S, Sakuma S, Noda M (2006). Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS Lett 580: 40514056.
  • Gombash SE, Lipton JW, Collier TJ, Madhavan L, Steece-Collier K, Cole-Strauss A et al. (2012). Striatal pleiotrophin overexpression provides functional and morphological neuroprotection in the 6-hydroxydopamine model. Mol Ther 20: 544554.
  • Gramage E, Herradon G (2010). Genetic deletion of pleiotrophin leads to disruption of spinal nociceptive transmission: evidence for pleiotrophin modulation of morphine-induced analgesia. Eur J Pharmacol 647: 97102.
  • Gramage E, Herradon G (2011). Connecting Parkinson's disease and drug addiction: common players reveal unexpected disease connections and novel therapeutic approaches. Curr Pharm Des 17: 449461.
  • Gramage E, Alguacil LF, Herradon G (2008). Pleiotrophin prevents cocaine-induced toxicity in vitro. Eur J Pharmacol 595: 3538.
  • Gramage E, Rossi L, Granado N, Moratalla R, Herradón G (2010a). Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum. Neurosci 170: 308316.
  • Gramage E, Putelli A, Polanco MJ, Gonzalez-Martin C, Ezquerra L, Alguacil LF et al. (2010b). The neurotrophic factor pleiotrophin modulates amphetamine-seeking behaviour and amphetamine-induced neurotoxic effects: evidence from PLEIOTROPHIN knockout mice. Addict Biol 15: 403412.
  • Gramage E, Martin YB, Ramanah P, Perez-Garcia C, Herradon G (2011). Midkine regulates amphetamine-induced astrocytosis in striatum but has no effects on amphetamine-induced striatal dopaminergic denervation and addictive effects: functional differences between pleiotrophin and midkine. Neurosci 190: 307317.
  • Gramage E, Martín YB, Herradon G (2012). The heparin binding growth factors midkine and pleiotrophin regulate the antinociceptive effects of morphine through α(2)-adrenergic independent mechanisms. Pharmacol Biochem Behav 101: 387393.
  • Gramage E, Herradón G, Martín YB, Vicente-Rodríguez M, Rojo L, Gnekow H et al. (2013a). Differential phosphoproteome of the striatum from pleiotrophin knockout and midkine knockout mice treated with amphetamine: correlations with amphetamine-induced neurotoxicity. Toxicology 306: 147156.
  • Gramage E, Pérez-García C, Vicente-Rodríguez M, Bollen S, Rojo L, Herradón G (2013b). Regulation of extinction of cocaine-induced place preference by midkine is related to a differential phosphorylation of peroxiredoxin 6 in dorsal striatum. Behav Brain Res 253C: 223231.
  • Grünblatt E, Zehetmayer S, Jacob CP, Müller T, Jost WH, Riederer P (2010). Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson's disease. J Neural Transm 117: 13871393.
  • Hendriks WJ, Elson A, Harroch S, Stoker AW (2008). Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 275: 816830.
  • Heneberg P (2009). Use of protein tyrosine phosphatase inhibitors as promising targeted therapeutic drugs. Curr Med Chem 16: 706733.
  • Herradon G, Ezquerra L (2009). Blocking receptor protein tyrosine phosphatase beta/zeta: a potential therapeutic strategy for Parkinson's disease. Curr Med Chem 16: 33223329.
  • Herradon G, Ezquerra L, Nguyen T, Vogt TF, Bronson R, Silos-Santiago I et al. (2004). Pleiotrophin is an important regulator of the renin-angiotensin system in mouse aorta. Biochem Biophys Res Commun 324: 10411047.
  • Herradon G, Ezquerra L, Nguyen T, Silos-Santiago I, Deuel TF (2005). Midkine regulates pleiotrophin organ-specific gene expression: evidence for transcriptional regulation and functional redundancy within the PTN/MK developmental gene family. Biochem Biophys Res Commun 333: 714721.
  • Herradon G, Ezquerra L, Gramage E, Alguacil LF (2009). Targeting the pleiotrophin /receptor protein tyrosine phosphatase beta/zeta signaling pathway to limit neurotoxicity induced by drug abuse. Mini Rev Med Chem 9: 440447.
  • Hida H, Masuda T, Sato T, Kim TS, Misumi S, Nishino H (2007). Pleiotrophin promotes functional recovery after neural transplantation in rats. Neuroreport 18: 179183.
  • Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W et al. (2009). The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 119: 16161625.
  • Hoffman BT, Nelson MR, Burdick K, Baxter SM (2004). Protein tyrosine phosphatases: strategies for distinguishing proteins in a family containing multiple drug targets and anti-targets. Curr Pharm Des 10: 11611181.
  • Huang P, Ramphal J, Wei J, Liang C, Jallal B, McMahon G et al. (2003). Structure-based design and discovery of novel inhibitors of protein tyrosine phosphatases. Bioorg Med Chem 11: 18351849.
  • Huang Q, Figueiredo-Pereira ME (2010). Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 15: 12921311.
  • Ichihara-Tanaka K, Oohira A, Rumsby M, Muramatsu T (2006). Neuroglycan C is a novel midkine receptor involved in process elongation of oligodendroglial precursor-like cells. J Biol Chem 281: 3085730864.
  • Iseki K, Hagino S, Mori T, Zhang Y, Yokoya S, Takaki H et al. (2002). Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia 39: 19.
  • Ishikawa E, Ooboshi H, Kumai Y, Takada J, Nakamura K, Ago T et al. (2009). Midkine gene transfer protects against focal brain ischemia and augments neurogenesis. J Neurol Sci 285: 7884.
  • Jain A, Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK (2013). Peptide and protein delivery using new drug delivery systems. Crit Rev Ther Drug Carrier Syst 30: 293329.
  • Jin L, Jianghai C, Juan L, Hao K (2009). Pleiotrophin and peripheral nerve injury. Neurosurg Rev 32: 387393.
  • Jung CG, Hida H, Nakahira K, Ikenaka K, Kim HJ, Nishino H (2004). Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cell-derived nestin-positive cells. FASEB J 18: 12371239.
  • Kadomatsu K (2010). Midkine regulation of the renin-angiotensin system. Curr Hypertens Rep 12: 7479.
  • Kadomatsu K, Muramatsu T (2004). Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204: 127143.
  • Kadomatsu K, Tomomura M, Muramatsu T (1988). cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151: 13121318.
  • Kadomatsu K, Kishida S, Tsubota S (2013). The heparin-binding growth factor MK: the biological activities and candidate receptors. J Biochem 153: 511521.
  • Kalivas PW, O'Brien C (2008). Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33: 166180.
  • Kawachi H, Fujikawa A, Maeda N, Noda M (2001). Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase zeta /beta by the yeast substrate-trapping system. Proc Natl Acad Sci U S A 98: 65936598.
  • Kikuchi S, Muramatsu H, Muramatsu T, Kim SU (1993). Midkine, a novel neurotrophic factor, promotes survival of mesencephalic neurons in culture. Neurosci Lett 160: 912.
  • Kim YB, Ryu JK, Lee HJ, Lim IJ, Park D, Lee MC et al. (2010). Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus. BMC Neurosci 11: 42.
  • Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO et al. (2013). Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 64: 520539.
  • Krasnova IN, Ladenheim B, Cadet JL (2005). Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondria-dependent pathway. FASEB J 19: 851853.
  • Krueger NX, Saito H (1992). A human transmembrane protein-tyrosine-phosphatase, PTP zeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proc Natl Acad Sci U S A 89: 74177421.
  • Kurosawa N, Chen GY, Kadomatsu K, Ikematsu S, Sakuma S, Muramatsu T (2001). Glypican-2 binds to midkine: the role of glypican-2 in neuronal cell adhesion and neurite outgrowth. Glycoconj J 18: 499507.
  • Le Greves P (2005). Pleiotrophin gene transcription in the rat nucleus accumbens is stimulated by an acute dose of amphetamine. Brain Res Bull 65: 529532.
  • Lessner G, Schmitt O, Haas SJ, Mikkat S, Kreutzer M, Wree A et al. (2010). Differential proteome of the striatum from hemiparkinsonian rats displays vivid structural remodeling processes. J Proteome Res 9: 46714687.
  • Li X, Wang H, Qiu P, Luo H (2008). Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain. Neurochem Int 52: 256264.
  • Li YS, Hoffman RM, Le Beau MM, Espinosa R 3rd, Jenkins NA, Gilbert DJ et al. (1992). Characterization of the human pleiotrophin gene. Promoter region and chromosomal localization. J Biol Chem 267: 2601126016.
  • Liemann S, Lewit-Bentley A (1995). Annexins: a novel family of calcium- and membrane-binding proteins in search of a function. Structure 3: 233237.
  • Luo J, Uribe RA, Hayton S, Calinescu AA, Gross JM, Hitchcock PF (2012). Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina. Neural Dev 7: 33.
  • Lv Q, Fan X, Xu G, Liu Q, Tian L, Cai X et al. (2013). Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res 1493: 8089.
  • Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M (1996). 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem 271: 2144621452.
  • Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, Noda M (1999). A receptor-like protein-tyrosine phosphatase PTPz/ RPTPb binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPz. J Biol Chem 274: 1247412479.
  • Mailleux P, Preud'homme X, Albala N, Vanderwinden JM, Vanderhaeghen JJ (1994). delta-9-Tetrahydrocannabinol regulates gene expression of the growth factor pleiotrophin in the forebrain. Neurosci Lett 175: 2527.
  • Malerba F, Paoletti F, Capsoni S, Cattaneo A (2011). Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv 10: 12771296.
  • Marchionini DM, Lehrmann E, Chu Y, He B, Sortwell CE, Becker KG et al. (2007). Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson's disease. Brain Res 1147: 7788.
  • Martin YB, Herradon G, Ezquerra L (2011). Uncovering new pharmacological targets to treat neuropathic pain by understanding how the organism reacts to nerve injury. Curr Pharm Des 17: 434448.
  • Martín YB, Gramage E, Herradón G (2013). Maintenance of amphetamine-induced place preference does not correlate with astrocytosis. Eur J Pharmacol 699: 258263.
  • Mash DC, Ouyang Q, Pablo J, Basile M, Izenwasser S, Lieberman A et al. (2003). Cocaine abusers have an overexpression of alpha-synuclein in dopamine neurons. J Neurosci 23: 25642713.
  • Matsubara S, Take M, Pedraza C, Muramatsu T (1994). Mapping and characterization of a retinoic acid-responsive enhancer of MK, a novel heparin-binding growth/differentiation factor with neurotrophic activity. J Biochem 115: 10881096.
  • Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M et al. (2000). Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A 97: 26032608.
  • Mi R, Chen W, Hoke A (2007). Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci U S A 104: 46644669.
  • Milner PG, Li YS, Hoffman RM, Kodner CM, Siegel NR, Deuel TF (1989). A novel 17 kD heparin-binding growth factor (HBGF-8) in bovine uterus: purification and N-terminal amino acid sequence. Biochem Biophys Res Commun 165: 10961103.
  • Monji A, Yoshida I, Tashiro K, Hayashi Y, Matsuda K, Tashiro N (2000). Inhibition of A beta fibril formation and A beta-induced cytotoxicity by senile plaque-associated proteins. Neurosci Lett 278: 8184.
  • Moses D, Drago J, Teper Y, Gantois I, Finkelstein DI, Horne MK (2008). Fetal striatum- and ventral mesencephalon-derived expanded neurospheres rescue dopaminergic neurons in vitro and the nigro-striatal system in vivo. Neuroscience 154: 606620.
  • Muramatsu H, Zou K, Sakaguchi N, Ikematsu S, Sakuma S, Muramatsu T (2000). LDL receptor-related protein as a component of the midkine receptor. Biochem Biophys Res Commun 270: 936941.
  • Muramatsu H, Zou P, Suzuki H, Oda Y, Chen GY, Sakaguchi N et al. (2004). Alpha4beta1- and alpha6beta1-integrins are functional receptors for midkine, a heparin-binding growth factor. J Cell Sci 117: 54055415.
  • Muramatsu H, Yokoi K, Chen L, Ichihara-Tanaka K, Kimura T, Muramatsu T (2011). Midkine as a factor to counteract the deposition of amyloid β-peptide plaques: in vitro analysis and examination in knockout mice. Int Arch Med 4: 1.
  • Muramatsu T (2010). Midkine, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci 86: 410425.
  • Muramatsu T (2011). Midkine: a promising molecule for drug development to treat diseases of the central nervous system. Curr Pharm Des 17: 410423.
  • Nakanishi T, Kadomatsu K, Okamoto T, Ichihara-Tanaka K, Kojima T, Saito H et al. (1997). Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with MK. J Biochem 121: 197205.
  • Nersesova LS (2011). Role of creatine kinase and its substrates in the central nervous system in norm and in various pathologies. Zh Evol Biokhim Fiziol 47: 120127.
  • O'Reilly MA, Hynynen K (2012). Ultrasound enhanced drug delivery to the brain and central nervous system. Int J Hyperthermia 28: 386396.
  • Ohgake S, Shimizu E, Hashimoto K, Okamura N, Koike K, Koizumi H et al. (2009). Dopaminergic hypofunctions and prepulse inhibition deficits in mice lacking midkine. Prog Neuropsychopharmacol Biol Psychiatry 33: 541546.
  • Ooboshi H (2011). Gene therapy as a novel pharmaceutical intervention for stroke. Curr Pharm Des 17: 424433.
  • Pardridge WM (2012). Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32: 19591972.
  • Pariser H, Ezquerra L, Herradon G, Perez-Pinera P, Deuel TF (2005a). Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin. Biochem Biophys Res Commun 332: 664669.
  • Pariser H, Herradon G, Ezquerra L, Perez-Pinera P, Deuel TF (2005b). Pleiotrophin regulates serine phosphorylation and the cellular distribution of beta-adducin through activation of protein kinase C. Proc Natl Acad Sci U S A 102: 1240712412.
  • Pariser H, Perez-Pinera P, Ezquerra L, Herradon G, Deuel TF (2005c). Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta. Biochem Biophys Res Commun 335: 232239.
  • Perez-Pinera P, Chang Y, Deuel TF (2007). Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts. Cell Cycle 6: 28772883.
  • Prediger RD, Rojas-Mayorquin AE, Aguiar AS Jr, Chevarin C, Mongeau R, Hamon M et al. (2011). Mice with genetic deletion of the heparin-binding growth factor midkine exhibit early preclinical features of Parkinson's disease. J Neural Transm 118: 12151225.
  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS et al. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453462.
  • Rauvala H (1989). An 18-kd heparin-binding protein of developing brain that is distinct from fibroblast growth factors. EMBO J 8: 29332941.
  • Rauvala H, Peng HB (1997). HB-GAM (heparin-binding growth-associated molecule) and heparin-type glycans in the development and plasticity of neuron-target contacts. Prog Neurobiol 52: 127144.
  • Rauvala H, Huttunen HJ, Fages C, Kaksonen M, Kinnunen T, Imai S et al. (2000). Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 19: 377387.
  • Sakakima H, Yoshida Y, Yamazaki Y, Matsuda F, Ikutomo M, Ijiri K et al. (2009). Disruption of the midkine gene (Mdk) delays degeneration and regeneration in injured peripheral nerve. Neurosci Res 87: 29082915.
  • Salama RH, Muramatsu H, Shimizu E, Hashimoto K, Ohgake S, Watanabe H et al. (2005). Increased midkine levels in sera from patients with Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 29: 611616.
  • Sanchez-Guajardo V, Barnum CJ, Tansey MG, Romero-Ramos M (2013). Neuroimmunological processes in Parkinson's disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5: e00112.
  • Schenone S, Brullo C, Musumeci F, Biava M, Falchi F, Botta M (2011). Fyn kinase in brain diseases and cancer: the search for inhibitors. Curr Med Chem 18: 29212942.
  • Silos-Santiago I, Yeh HJ, Gurrieri MA, Guillerman RP, Li YS, Wolf J et al. (1996). Localization of pleiotrophin and its mRNA in subpopulations of neurons and their corresponding axonal tracts suggests important roles in neural-glial interactions during development and in maturity. J Neurobiol 31: 283296.
  • Sotogaku N, Tully SE, Gama CI, Higashi H, Tanaka M, Hsieh-Wilson LC et al. (2007). Activation of phospholipase C pathways by a synthetic chondroitin sulfate-E tetrasaccharide promotes neurite outgrowth of dopaminergic neurons. J Neurochem 103: 749760.
  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997). Alpha-synuclein in Lewy bodies. Nature 388: 839840.
  • Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C et al. (2001). Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 276: 1677216779.
  • Tamura H, Fukada M, Fujikawa A, Noda M (2006). Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci Lett 399: 3338.
  • Taravini IR, Chertoff M, Cafferata EG, Courty J, Murer MG, Pitossi FJ et al. (2011). Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats. Mol Neurodegener 6: 40.
  • Tzschentke TM (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12: 227462.
  • Valverde O, Rodríguez-Árias M (2013). Modulation Of 3, 4-Methylenedioxymethamphetamine Effects By Endocannabinoid System. Curr Pharm Des. [Epub ahead of print].
  • Ventura JJ, Nebreda AR (2006). Protein kinases and phosphatases as therapeutic targets in cancer. Clin Transl Oncol 8: 153160.
  • Wang J, Carnicella S, Phamluong K, Jeanblanc J, Ronesi JA, Chaudhri N et al. (2007). Ethanol induces long-term facilitation of NR2B-NMDA receptor activity in the dorsal striatum: implications for alcohol drinking behavior. J Neurosci 27: 35933602.
  • Weckbach LT, Groesser L, Borgolte J, Pagel JI, Pogoda F, Schymeinsky J et al. (2012). Midkine acts as proangiogenic cytokine in hypoxia-induced angiogenesis. Am J Physiol Heart Circ Physiol 303: 429438.
  • Wellstein A (2012). ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front Oncol 2: 192.
  • Westerlund M, Galter D, Carmine A, Olson L (2005). Tissue- and species-specific expression patterns of class I, III, and IV Adh and Aldh 1 mRNAs in rodent embryos. Cell Tissue Res 322: 227236.
  • Wey MC, Fernandez E, Martinez PA, Sullivan P, Goldstein DS, Strong R (2012). Neurodegeneration and motor dysfunction in mice lacking cytosolic and mitochondrial aldehyde dehydrogenases: implications for Parkinson's disease. Plos ONE 7: e31522.
  • Wisniewski T, Lalowski M, Baumann M, Rauvala H, Raulo E, Nolo R et al. (1996). HB-GAM is a cytokine present in Alzheimer's and Down's syndrome lesions. Neuroreport 7: 667671.
  • Wong MS, Sidik SM, Mahmud R, Stanslas J (2013). Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin Exp Pharmacol Physiol 40: 307319.
  • Yasuhara O, Muramatsu H, Kim SU, Muramatsu T, Maruta H, McGeer PL (1993). Midkine, a novel neurotrophic factor, is present in senile plaques of Alzheimer disease. Biochem Biophys Res Commun 192: 246251.
  • Yoshida Y, Ikematsu S, Moritoyo T, Goto M, Tsutsui J, Sakuma S et al. (2001). Intraventricular administration of the neurotrophic factor midkine ameliorates hippocampal delayed neuronal death following transient forebrain ischemia in gerbils. Brain Res 894: 4655.
  • Yu GS, Hu J, Nakagawa H (1998). Inhibition of beta-amyloid cytotoxicity by midkine. Neurosci Lett 254: 125128.
  • Zhu J, Jiang Y, Xu G, Liu X (2012). Intranasal administration: a potential solution for cross-BBB delivering neurotrophic factors. Histol Histopathol 27: 537548.
  • Zou K, Muramatsu H, Ikematsu S, Sakuma S, Salama RH, Shinomura T et al. (2000). A heparin-binding growth factor, midkine, binds to a chondroitin sulfate proteoglycan, PG-M/versican. Eur J Biochem 267: 40464053.