SEARCH

SEARCH BY CITATION

References

  • Alexander SPH et al. (2013). The Concise Guide to PHARMACOLOGY 2013/14: Overview. Br J Pharmacol 170: 14491867.
  • Anastasi A, Erspamer V, Bucci M (1971). Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27: 166167.
  • Anton AH, Sayre DF (1962). A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360375.
  • Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B et al. (2012). Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem 287: 3694436967.
  • Biagioli M, Pinto M, Cesselli D, Zaninello M, Lazarevic D, Roncaglia P et al. (2009). Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci U S A 106: 1545415459.
  • Bisogno T, MacCarrone M, De Petrocellis L, Jarrahian A, Finazzi-Agrò A, Hillard C et al. (2001). The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. Eur J Biochem 268: 19821989.
  • Blais PA, Côté J, Morin J, Larouche A, Gendron G, Fortier A et al. (2005). Hypotensive effects of hemopressin and bradykinin in rabbits, rats and mice. A comparative study. Peptides 26: 13171322.
  • Bomar MG, Samuelsson SJ, Kibler P, Kodukula K, Galande AK (2012). Hemopressin forms self-assembled fibrillar nanostructures under physiologically relevant conditions. Biomacromolecules 13: 579583.
  • Dodd GT, Mancini G, Lutz B, Luckman SM (2010). The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice. J Neurosci 30: 73697376.
  • Dodd GT, Worth AA, Hodkinson DJ, Srivastava RK, Lutz B, Williams SR et al. (2013). Central functional response to the novel peptide cannabinoid, hemopressin. Neuropharmacology 71: 2736.
  • Gelman JS, Sironi J, Castro LM, Ferro ES, Fricker LD (2010). Hemopressins and other hemoglobin-derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice. J Neurochem 113: 871880.
  • Gelman JS, Dasgupta S, Berezniuk I, Fricker LD (2013). Analysis of peptides secreted from cultured mouse brain tissue. Biochim Biophys Acta 1834: 24082417.
  • Giuffrida A, Beltramo M, Piomelli D (2001). Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. J Pharmacol Exp Ther 298: 714.
  • Gomes I, Grushko JS, Golebiewska U, Hoogendoorn S, Gupta A, Heimann AS et al. (2009). Novel endogenous peptide agonists of cannabinoid receptors. FASEB J 23: 30203029.
  • Gomes I, Dale CS, Casten K, Geigner MA, Gozzo FC, Ferro ES et al. (2010). Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS J 12: 658669.
  • Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE et al. (2001). 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA 98: 36623665.
  • He Y, Hua Y, Liu W, Hu H, Keep RF, Xi G (2009). Effects of cerebral ischemia on neuronal hemoglobin. J Cereb Blood Flow Metab 29: 596605.
  • Heimann AS, Gomes I, Dale CS, Pagano RL, Gupta A, de Souza LL et al. (2007). Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci U S A 104: 2058820593.
  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA et al. (2002). International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54: 161202.
  • Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD (1995). Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270: 644646.
  • Jensen RT, Battey JF, Spindel ER, Benya RV (2008). International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60: 142.
  • Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG (2010). Animal research: Reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160: 15771579.
  • Lan R, Liu Q, Fan P, Lin S, Fernando SR, McCallion D et al. (1999). Structure-activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J Med Chem 42: 769776.
  • Liu L, Zeng M, Stamler JS (1999). Hemoglobin induction in mouse macrophages. Proc Natl Acad Sci U S A 96: 66436647.
  • Luchicchi A, Pistis M (2012). Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol Neurobiol 46: 374392.
  • Marcus F (1985). Preferential cleavage at aspartyl-prolyl peptide bonds in dilute acid. Int J Pept Protein Res 25: 542546.
  • McGrath J, Drummond G, McLachlan E, Kilkenny C, Wainwright C (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160: 15731576.
  • Newton DA, Rao KM, Dluhy RA, Baatz JE (2006). Hemoglobin is expressed by alveolar epithelial cells. J Biol Chem 281: 56685676.
  • Okuma Y, Yokotani K, Osumi Y (1995). Centrally applied bombesin increases nerve activity of both sympathetic and adrenal branch of the splanchnic nerves. Jpn J Pharmacol 68: 227230.
  • Paxinos G, Watson C (2005). Paxinos G , Watson C (ed). The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press: Burlington.
  • Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR et al. (2010). International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62: 588631.
  • Pyner S (2009). Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat 38: 197208.
  • Pyner S, Coote JH (1994). Evidence that sympathetic preganglionic neurones are arranged in target-specific columns in the thoracic spinal cord of the rat. J Comp Neurol 342: 1522.
  • Pyner S, Coote JH (2000). Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience 100: 549556.
  • Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF (2009). Neurons express hemoglobin α- and β-chains in rat and human brains. J Comp Neurol 515: 538547.
  • Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Congy C et al. (1994). SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350: 240244.
  • Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS et al. (2003). Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 278: 85478555.
  • Sawchenko PE, Swanson LW (1982). Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205: 260272.
  • Setton-Avruj CP, Musolino PL, Salis C, Alló M, Bizzozero O, Villar MJ et al. (2007). Presence of α-globin mRNA and migration of bone marrow cells after sciatic nerve injury suggests their participation in the degeneration/regeneration process. Exp Neurol 203: 568578.
  • Shimizu T, Okada S, Yamaguchi-Shima N, Yokotani K (2004). Brain phospholipase C-diacylglycerol lipase pathway is involved in vasopressin-induced release of noradrenaline and adrenaline from adrenal medulla in rats. Eur J Pharmacol 499: 99105.
  • Shimizu T, Lu L, Yokotani K (2011). Endogenously generated 2-arachidonoylglycerol plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow in rats. Eur J Pharmacol 658: 123131.
  • Shimizu T, Tanaka K, Yokotani K (2013). Stimulatory and inhibitory roles of brain 2-arachidonoylglycerol in bombesin-induced central activation of adrenomedullary outflow in rats. J Pharmacol Sci 121: 157171.
  • Swanson LW, Sawchenko PE (1980). Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31: 410417.
  • Tanaka K, Osako Y, Yuri K (2010). Juvenile social experience regulates central neuropeptides relevant to emotional and social behaviors. Neuroscience 166: 10361042.
  • Tanaka K, Shimizu T, Lu L, Nakamura K, Yokotani K (2012). Centrally administered bombesin activates COX-containing spinally projecting neurons of the PVN in anesthetized rats. Auton Neurosci 169: 6369.
  • Viñuela MC, Larsen PJ (2001). Identification of NPY-induced c-Fos expression in hypothalamic neurones projecting to the dorsal vagal complex and the lower thoracic spinal cord. J Comp Neurol 438: 286299.
  • Wride MA, Mansergh FC, Adams S, Everitt R, Minnema SE, Rancourt DE et al. (2003). Expression profiling and gene discovery in the mouse lens. Mol Vis 9: 360396.
  • Yanagita T, Maruta T, Uezono Y, Satoh S, Yoshikawa N, Nemoto T et al. (2007). Lithium inhibits function of voltage-dependent sodium channels and catecholamine secretion independent of glycogen synthase kinase-3 in adrenal chromaffin cells. Neuropharmacology 53: 881889.
  • Yanagita T, Maruta T, Nemoto T, Uezono Y, Matsuo K, Satoh S et al. (2009). Chronic lithium treatment up-regulates cell surface NaV1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na+ influx, Ca2+ influx and catecholamine secretion after lithium withdrawal. Neuropharmacology 57: 311321.
  • Yanagita T, Satoh S, Uezono Y, Matsuo K, Nemoto T, Maruta T et al. (2011). Transcriptional up-regulation of cell surface NaV1.7 sodium channels by insulin-like growth factor-1 via inhibition of glycogen synthase kinase-3β in adrenal chromaffin cells: enhancement of 22Na+ influx, 45Ca2+ influx and catecholamine secretion. Neuropharmacology 61: 12651274.
  • Yokotani K, Nishihara M, Murakami Y, Hasegawa T, Okuma Y, Osumi Y (1995). Elevation of plasma noradrenaline levels in urethane-anaesthetized rats by activation of central prostanoid EP3 receptors. Br J Pharmacol 115: 672676.
  • Yokotani K, Okada S, Nakamura K, Yamaguchi-Shima N, Shimizu T, Arai J et al. (2005). Brain prostanoid TP receptor-mediated adrenal noradrenaline secretion and EP3 receptor-mediated sympathetic noradrenaline release in rats. Eur J Pharmacol 512: 2935.