SEARCH

SEARCH BY CITATION

References

  • Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, Van Den Berg LH (2012). The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 124: 339352.
  • Anderson PR, Kirby K, Hilliker AJ, Phillips JP (2005). RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila. Hum Mol Genet 14: 33973405.
  • Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B et al. (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 104: 1480714812.
  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S et al. (1993). The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4: 398403.
  • Anonymous (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72: 971983.
  • Aschner M, Erikson KM, Herrero Hernandez E, Tjalkens R (2009). Manganese and its role in Parkinson's disease: from transport to neuropathology. Neuromolecular Med 11: 252266.
  • Atamna H, Walter PB, Ames BN (2002). The role of heme and iron-sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys 397: 345353.
  • Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J (1999). Increased basal ganglia iron levels in Huntington disease. Arch Neurol 56: 569574.
  • Batinic-Haberle I, Rajic Z, Tovmasyan A, Reboucas JS, Ye X, Leong KW et al. (2011). Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 51: 10351053.
  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM et al. (1993). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13: 41814192.
  • Belluzzi E, Bisaglia M, Lazzarini E, Tabares LC, Beltramini M, Bubacco L (2012). Human SOD2 modification by dopamine quinones affects enzymatic activity by promoting its aggregation: possible implications for Parkinson's disease. PLoS ONE 7: e38026.
  • Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N et al. (2006). Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17: 16521663.
  • Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F et al. (2007). Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110: 401408.
  • Bolanos JP, Heales SJ, Land JM, Clark JB (1995). Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64: 19651972.
  • Bowling AC, Schulz JB, Brown RH Jr, Beal MF (1993). Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61: 23222325.
  • Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH (2000). Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum Mol Genet 9: 275282.
  • Bradley WG (1995). Overview of motor neuron disease: classification and nomenclature. Clin Neurosci 3: 323326.
  • Brennan WA Jr, Bird ED, Aprille JR (1985). Regional mitochondrial respiratory activity in Huntington's disease brain. J Neurochem 44: 19481950.
  • Calderone A, Jover T, Mashiko T, Noh KM, Tanaka H, Bennett MV et al. (2004). Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci 24: 99039913.
  • Callio J, Oury TD, Chu CT (2005). Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem 280: 1853618542.
  • Calmels N, Schmucker S, Wattenhofer-Donze M, Martelli A, Vaucamps N, Reutenauer L et al. (2009). The first cellular models based on frataxin missense mutations that reproduce spontaneously the defects associated with Friedreich ataxia. PLoS ONE 4: e6379.
  • Carroll CB, Zeissler ML, Chadborn N, Gibson K, Williams G, Zajicek JP et al. (2011). Changes in iron-regulatory gene expression occur in human cell culture models of Parkinson's disease. Neurochem Int 59: 7380.
  • Caruana M, Hogen T, Levin J, Hillmer A, Giese A, Vassallo N (2011). Inhibition and disaggregation of alpha-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585: 11131120.
  • Caudle WM, Guillot TS, Lazo CR, Miller GW (2012). Industrial toxicants and Parkinson's disease. Neurotoxicology 33: 178188.
  • Chen LB (1988). Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4: 155181.
  • Cheng Y, He G, Mu X, Zhang T, Li X, Hu J et al. (2008). Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett 441: 1620.
  • Choi MY, Pollard JA, Webb MA, McHale JL (2003). Counterion-dependent excitonic spectra of tetra(p-carboxyphenyl)porphyrin aggregates in acidic aqueous solution. J Am Chem Soc 125: 810820.
  • Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, Lemeur M et al. (2000). Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9: 12191226.
  • Cozzolino M, Pesaresi MG, Amori I, Crosio C, Ferri A, Nencini M et al. (2009). Oligomerization of mutant SOD1 in mitochondria of motoneuronal cells drives mitochondrial damage and cell toxicity. Antioxid Redox Signal 11: 15471558.
  • Crow JP, Calingasan NY, Chen J, Hill JL, Beal MF (2005). Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann Neurol 58: 258265.
  • Czerniczyniec A, Lores-Arnaiz S, Bustamante J (2013). Mitochondrial susceptibility in a model of paraquat neurotoxicity. Free Radic Res 47: 614623.
  • Dairam A, Fogel R, Daya S, Limson JL (2008). Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J Agric Food Chem 56: 33503356.
  • Damiano M, Diguet E, Malgorn C, D'aurelio M, Galvan L, Petit F et al. (2013). A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 22: 38693882.
  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P et al. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem 52: 18301836.
  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE et al. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114 (Pt 4): 19531975.
  • Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005). Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5: 5565.
  • Donnelly PS, Liddell JR, Lim S, Paterson BM, Cater MA, Savva MS et al. (2012). An impaired mitochondrial electron transport chain increases retention of the hypoxia imaging agent diacetylbis (4-methylthiosemicarbazonato)copperII. Proc Natl Acad Sci U S A 109: 4752.
  • Du XX, Xu HM, Jiang H, Song N, Wang J, Xie JX (2012). Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson's disease. Neurosci Bull 28: 253258.
  • Dubey SK, Sharma AK, Narain U, Misra K, Pati U (2008). Design, synthesis and characterization of some bioactive conjugates of curcumin with glycine, glutamic acid, valine and demethylenated piperic acid and study of their antimicrobial and antiproliferative properties. Eur J Med Chem 43: 18371846.
  • Duchen MR (2012). Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch 464: 111121.
  • Dumas EM, Versluis MJ, Van Den Bogaard SJ, Van Osch MJ, Hart EP, Van Roon-Mom WM et al. (2012). Elevated brain iron is independent from atrophy in Huntington's disease. Neuroimage 61: 558564.
  • Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011). Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10: 7582.
  • Dusek P, Jankovic J, Le W (2012). Iron dysregulation in movement disorders. Neurobiol Dis 46: 118.
  • Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM et al. (2012). Mitochondrial dysfunction – a pharmacological target in Alzheimer's disease. Mol Neurobiol 46: 136150.
  • Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011). Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7: 616630.
  • Ferrari E, Asti M, Benassi R, Pignedoli F, Saladini M (2013). Metal binding ability of curcumin derivatives: a theoretical vs. experimental approach. Dalton Trans 42: 53045313.
  • Field LS, Furukawa Y, O'halloran TV, Culotta VC (2003). Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278: 2805228059.
  • Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V et al. (2007). Mechanisms of copper ion mediated Huntington's disease progression. PLoS ONE 2: e334.
  • Fredenburg AM, Sethi RK, Allen DD, Yokel RA (1996). The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1'ol]-2-methyl-3-hydroxypyridin-4-one in the rat. Toxicology 108: 191199.
  • Garcia CR, Angele-Martinez C, Wilkes JA, Wang HC, Battin EE, Brumaghim JL (2012). Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism. Dalton Trans 41: 64586467.
  • Goedert M (2001). Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosc 2: 492501.
  • Goncalves S, Paupe V, Dassa EP, Rustin P (2008). Deferiprone targets aconitase: implication for Friedreich's ataxia treatment. BMC Neurol 8: 20.
  • Groce DF, Kimbrough RD (1982). Acute and subacute toxicity in Sherman strain rats exposed to 4,4′- and 2,2′-dipyridyl. J Toxicol Environ Health 10: 363372.
  • Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996). Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 39: 385389.
  • Gunter TE, Puskin JS (1972). Manganous ion as a spin label in studies of mitochondrial uptake of manganese. Biophys J 12: 625635.
  • Hadzhieva M, Kirches E, Wilisch-Neumann A, Pachow D, Wallesch M, Schoenfeld P et al. (2013). Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience 230: 94101.
  • Harish G, Venkateshappa C, Mythri RB, Dubey SK, Mishra K, Singh N et al. (2010). Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson's disease. Bioorg Med Chem 18: 26312638.
  • He XL, Wang YH, Gao M, Li XX, Zhang TT, Du GH (2009). Baicalein protects rat brain mitochondria against chronic cerebral hypoperfusion-induced oxidative damage. Brain Res 1249: 212221.
  • Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S, Franich NR et al. (2012). Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease. Mol Neurodegener 7: 12.
  • Hilditch-Maguire P, Trettel F, Passani LA, Auerbach A, Persichetti F, Macdonald ME (2000). Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet 9: 27892797.
  • Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J (2007). Coffee and tea consumption and the risk of Parkinson's disease. Mov Disord 22: 22422248.
  • Huang ML, Becker EM, Whitnall M, Suryo Rahmanto Y, Ponka P, Richardson DR (2009). Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. Proc Natl Acad Sci U S A 106: 1638116386.
  • Huang ML, Lane DJ, Richardson DR (2011). Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. Antioxid Redox Signal 15: 30033019.
  • Hung LW, Villemagne VL, Cheng L, Sherratt NA, Ayton S, White AR et al. (2012). The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. J Exp Med 209: 837854.
  • Igoudjil A, Magrane J, Fischer LR, Kim HJ, Hervias I, Dumont M et al. (2011). In vivo pathogenic role of mutant SOD1 localized in the mitochondrial intermembrane space. J Neurosci 31: 1582615837.
  • Iwunze MO, McEwan D (2004). Peroxynitrite interaction with curcumin solubilized in ethanolic solution. Cell Mol Biol (Noisy-le-grand) 50: 749752.
  • Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S (2009). Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29: 610619.
  • Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH (2001). Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 276: 4752447529.
  • Jiang H, Tian X, Guo Y, Duan W, Bu H, Li C (2011). Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol Pharm Bull 34: 11941197.
  • Jiao Y, Wilkinson JT, Christine Pietsch E, Buss JL, Wang W, Planalp R et al. (2006). Iron chelation in the biological activity of curcumin. Free Radic Biol Med 40: 11521160.
  • Jiao Y, Wilkinson JT, Di X, Wang W, Hatcher H, Kock ND et al. (2009). Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 113: 462469.
  • Jordan J, De Groot PW, Galindo MF (2011). Mitochondria: the headquarters in ischemia-induced neuronal death. Cent Nerv Syst Agents Med Chem 11: 98106.
  • Jung JE, Kim GS, Narasimhan P, Song YS, Chan PH (2009). Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 29: 70037014.
  • Kakhlon O, Manning H, Breuer W, Melamed-Book N, Lu C, Cortopassi G et al. (2008). Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation. Blood 112: 52195227.
  • Kamat JP, Devasagayam TP (1995). Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett 195: 179182.
  • Kasarskis EJ, Tandon L, Lovell MA, Ehmann WD (1995). Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci 130: 203208.
  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R et al. (2003). Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron 37: 899909.
  • Kawamata H, Manfredi G (2010). Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid Redox Signal 13: 13751384.
  • Keir ST, Dewhirst MW, Kirkpatrick JP, Bigner DD, Batinic-Haberle I (2011). Cellular redox modulator, ortho Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) in the treatment of brain tumors. Anticancer Agents Med Chem 11: 202212.
  • Kim BE, Nevitt T, Thiele DJ (2008). Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4: 176185.
  • Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S et al. (2007). The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins. Acta Neuropathol (Berl) 114: 163173.
  • Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006). Coenzyme Q(10) provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci 28: 125141.
  • Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI (2008). Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta 1780: 673679.
  • Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S et al. (2006). Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr 83: 355361.
  • Lapchak PA, Schubert DR, Maher PA (2011). Delayed treatment with a novel neurotrophic compound reduces behavioral deficits in rabbit ischemic stroke. J Neurochem 116: 122131.
  • Lee DW, Kaur D, Chinta SJ, Rajagopalan S, Andersen JK (2009). A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glutaredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: implications for Parkinson's disease. Antioxid Redox Signal 11: 20832094.
  • Lee S, Suh S, Kim S (2000). Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 287: 191194.
  • Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001). Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78: 10731082.
  • Levites Y, Amit T, Youdim MB, Mandel S (2002). Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277: 3057430580.
  • Li K, Besse EK, Ha D, Kovtunovych G, Rouault TA (2008). Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet 17: 22652273.
  • Liccione JJ, Maines MD (1988). Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J Pharmacol Exp Ther 247: 156161.
  • Lim S, Price KA, Chong SF, Paterson BM, Caragounis A, Barnham KJ et al. (2010). Copper and zinc bis(thiosemicarbazonato) complexes with a fluorescent tag: synthesis, radiolabelling with copper-64, cell uptake and fluorescence studies. J Biol Inorg Chem 15: 225235.
  • Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord 27: 349356.
  • Liu Y, Dargusch R, Maher P, Schubert D (2008). A broadly neuroprotective derivative of curcumin. J Neurochem 105: 13361345.
  • Liu Z, Yu Y, Li X, Ross CA, Smith WW (2011). Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res 63: 439444.
  • Loeffler DA, Lewitt PA, Juneau PL, Sima AA, Nguyen HU, Demaggio AJ et al. (1996). Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res 738: 265274.
  • Long S, Jirku M, Mach J, Ginger ML, Sutak R, Richardson D et al. (2008). Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol Microbiol 69: 94109.
  • Lu J, Duan W, Guo Y, Jiang H, Li Z, Huang J et al. (2012). Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res Bull 89: 185190.
  • Lumsden AL, Henshall TL, Dayan S, Lardelli MT, Richards RI (2007). Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet 16: 19051920.
  • McAllum EJ, Lim NK, Hickey JL, Paterson BM, Donnelly PS, Li QX et al. (2013). Therapeutic effects of Cu(II)(atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14: 586590.
  • McEachern G, Kassovska-Bratinova S, Raha S, Tarnopolsky MA, Turnbull J, Bourgeois J et al. (2000). Manganese superoxide dismutase levels are elevated in a proportion of amyotrophic lateral sclerosis patient cell lines. Biochem Biophys Res Commun 273: 359363.
  • Mackensen GB, Patel M, Sheng H, Calvi CL, Batinic-Haberle I, Day BJ et al. (2001). Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J Neurosci 21: 45824592.
  • Magrane J, Hervias I, Henning MS, Damiano M, Kawamata H, Manfredi G (2009). Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet 18: 45524564.
  • Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T et al. (2005). Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14: 4660.
  • Maraldi T, Riccio M, Zambonin L, Vinceti M, De Pol A, Hakim G (2011). Low levels of selenium compounds are selectively toxic for a human neuron cell line through ROS/RNS increase and apoptotic process activation. Neurotoxicology 32: 180187.
  • Marmolino D (2011). Friedreich's ataxia: past, present and future. Brain Res Rev 67: 311330.
  • Martin HL, Teismann P (2009). Glutathione – a review on its role and significance in Parkinson's disease. FASEB J 23: 32633272.
  • Mastroberardino PG, Hoffman EK, Horowitz MP, Betarbet R, Taylor G, Cheng D et al. (2009). A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease. Neurobiol Dis 34: 417431.
  • Mochizuki H, Yasuda T (2012). Iron accumulation in Parkinson's disease. J Neural Transm 119: 15111514.
  • Morgan MT, Bagchi P, Fahrni CJ (2011). Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone. J Am Chem Soc 133: 1590615909.
  • Mu X, He G, Cheng Y, Li X, Xu B, Du G (2009). Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 92: 642648.
  • Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002). The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11: 20252036.
  • Mythri RB, Harish G, Dubey SK, Misra K, Bharath MM (2011). Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson's disease. Mol Cell Biochem 347: 135143.
  • Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996). Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21: 895902.
  • Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J et al. (1995). Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81: 811823.
  • New EJ (2013). Tools to study distinct metal pools in biology. Dalton Trans 42: 32103219.
  • Nie G, Jin C, Cao Y, Shen S, Zhao B (2002). Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys 397: 8490.
  • Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA et al. (2007). Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68: 18201825.
  • Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K et al. (1993). Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189: 843846.
  • Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ et al. (2001). Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Ann Nucl Med 15: 499504.
  • Oliveira JM (2010). Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. J Neurochem 114: 112.
  • Ono K, Yamada M (2006). Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. J Neurochem 97: 105115.
  • Packer MA, Murphy MP (1994). Peroxynitrite causes calcium efflux from mitochondria which is prevented by cyclosporin A. FEBS Lett 345: 237240.
  • Pan J, Li H, Ma JF, Tan YY, Xiao Q, Ding JQ et al. (2012). Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease through suppressing mitochondria dysfunction. Transl Neurodegener 1: 16.
  • Panov A, Kubalik N, Zinchenko N, Hemendinger R, Dikalov S, Bonkovsky HL (2011). Respiration and ROS production in brain and spinal cord mitochondria of transgenic rats with mutant G93a Cu/Zn-superoxide dismutase gene. Neurobiol Dis 44: 5362.
  • Parker SJ, Meyerowitz J, James JL, Liddell JR, Nonaka T, Hasegawa M et al. (2012). Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes. PLoS ONE 7: e42277.
  • Pascu SI, Waghorn PA, Conry TD, Lin B, Betts HM, Dilworth JR et al. (2008). Cellular confocal fluorescence studies and cytotoxic activity of new Zn(II) bis(thiosemicarbazonato) complexes. Dalton Trans 2008: 21072110.
  • Pascu SI, Waghorn PA, Kennedy BW, Arrowsmith RL, Bayly SR, Dilworth JR et al. (2010). Fluorescent copper(II) bis(thiosemicarbazonates): synthesis, structures, electron paramagnetic resonance, radiolabeling, in vitro cytotoxicity and confocal fluorescence microscopy studies. Chem Asian J 5: 506519.
  • Pasternack RF, Banth A, Pasternack JM, Johnson CS (1981). Catalysis of the disproportionation of superoxide by metalloporphyrins. III. J Inorg Biochem 15: 261267.
  • Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997). Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease. J Neural Transm 104: 661677.
  • Piantadosi CA, Zhang J (1996). Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27: 327331; discussion 332.
  • Pierrel F, Cobine PA, Winge DR (2007). Metal ion availability in mitochondria. Biometals 20: 675682.
  • Popescu BF, George MJ, Bergmann U, Garachtchenko AV, Kelly ME, McCrea RP et al. (2009). Mapping metals in Parkinson's and normal brain using rapid-scanning X-ray fluorescence. Phys Med Biol 54: 651663.
  • Price KA, Crouch PJ, Lim S, Paterson BM, Liddell JR, Donnelly PS et al. (2011). Subcellular localization of a fluorescent derivative of CuII(atsm) offers insight into the neuroprotective action of CuII(atsm). Metallomics 3: 12801290.
  • Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J et al. (2001). Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27: 181186.
  • Radi R, Rodriguez M, Castro L, Telleri R (1994). Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 8995.
  • Radisky DC, Babcock MC, Kaplan J (1999). The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J Biol Chem 274: 44974499.
  • Reichmann H, Janetzky B, Riederer P (1995). Iron-dependent enzymes in Parkinson's disease. J Neural Transm Suppl 46: 157164.
  • Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y et al. (2010). Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107: 1077510782.
  • Rines AK, Ardehali H (2013). Transition metals and mitochondrial metabolism in the heart. J Mol Cell Cardiol 55: 5057.
  • Romeo L, Intrieri M, D'agata V, Mangano NG, Oriani G, Ontario ML et al. (2009). The major green tea polyphenol, (-)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 28 (Suppl): 492S499S.
  • Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK et al. (2012). Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol 69: 887893.
  • Rotig A, De Lonlay P, Chretien D, Foury F, Koenig M, Sidi D et al. (1997). Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17: 215217.
  • Saba H, Batinic-Haberle I, Munusamy S, Mitchell T, Lichti C, Megyesi J et al. (2007). Manganese porphyrin reduces renal injury and mitochondrial damage during ischemia/reperfusion. Free Radic Biol Med 42: 15711578.
  • Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C (1995). Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322: 339346.
  • Sarsero JP, Li L, Wardan H, Sitte K, Williamson R, Ioannou PA (2003). Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 5: 7281.
  • Sasaki S, Iwata M (1996). Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett 204: 5356.
  • Schipper HM, Vininsky R, Brull R, Small L, Brawer JR (1998). Astrocyte mitochondria: a substrate for iron deposition in the aging rat substantia nigra. Exp Neurol 152: 188196.
  • Schroeder EK, Kelsey NA, Doyle J, Breed E, Bouchard RJ, Loucks FA et al. (2009). Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal 11: 469480.
  • Schroeter H, Bahia P, Spencer JP, Sheppard O, Rattray M, Cadenas E et al. (2007). (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J Neurochem 101: 15961606.
  • Sensi SL, Jeng JM (2004). Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr Mol Med 4: 87111.
  • Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK et al. (2003). Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci U S A 100: 61576162.
  • Sheline CT, Zhu J, Zhang W, Shi C, Cai AL (2013). Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo. Neurodegener Dis 11: 4958.
  • Sheng H, Yang W, Fukuda S, Tse HM, Paschen W, Johnson K et al. (2009). Long-term neuroprotection from a potent redox-modulating metalloporphyrin in the rat. Free Radic Biol Med 47: 917923.
  • Sheng H, Spasojevic I, Tse HM, Jung JY, Hong J, Zhang Z et al. (2011). Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage. J Pharmacol Exp Ther 338: 906916.
  • Shi P, Gal J, Kwinter DM, Liu X, Zhu H (2010). Mitochondrial dysfunction in amyotrophic lateral sclerosis. Biochim Biophys Acta 1802: 4551.
  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F et al. (1994). Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36: 348355.
  • Sian-Hulsmann J, Mandel S, Youdim MB, Riederer P (2011). The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem 118: 939957.
  • Singh S, Khodr H, Taylor MI, Hider RC (1995). Therapeutic iron chelators and their potential side-effects. Biochem Soc Symp 61: 127137.
  • Sohn YS, Breuer W, Munnich A, Cabantchik ZI (2008). Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111: 16901699.
  • Son M, Puttaparthi K, Kawamata H, Rajendran B, Boyer PJ, Manfredi G et al. (2007). Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci U S A 104: 60726077.
  • Sood PK, Nahar U, Nehru B (2011). Curcumin attenuates aluminum-induced oxidative stress and mitochondrial dysfunction in rat brain. Neurotox Res 20: 351361.
  • Soon CP, Donnelly PS, Turner BJ, Hung LW, Crouch PJ, Sherratt NA et al. (2011). Diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model. J Biol Chem 286: 4403544044.
  • Soriano S, Llorens JV, Blanco-Sobero L, Gutierrez L, Calap-Quintana P, Morales MP et al. (2013). Deferiprone and idebenone rescue frataxin depletion phenotypes in a Drosophila model of Friedreich's ataxia. Gene 521: 274281.
  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997). Alpha-synuclein in Lewy bodies. Nature 388: 839840.
  • Subramaniam SR, Chesselet MF (2013). Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol 106–107: 1732.
  • Sutherland BA, Shaw OM, Clarkson AN, Jackson DN, Sammut IA, Appleton I (2005). Neuroprotective effects of (-)-epigallocatechin gallate following hypoxia-ischemia-induced brain damage: novel mechanisms of action. FASEB J 19: 258260.
  • Tan G, Chen LS, Lonnerdal B, Gellera C, Taroni FA, Cortopassi GA (2001). Frataxin expression rescues mitochondrial dysfunctions in FRDA cells. Hum Mol Genet 10: 20992107.
  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M et al. (2011). Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect 119: 866872.
  • Tauskela JS, Brunette E, O'reilly N, Mealing G, Comas T, Gendron TF et al. (2005). An alternative Ca2+-dependent mechanism of neuroprotection by the metalloporphyrin class of superoxide dismutase mimetics. FASEB J 19: 17341736.
  • Tovmasyan AG, Rajic Z, Spasojevic I, Reboucas JS, Chen X, Salvemini D et al. (2011). Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins. Dalton Trans 40: 41114121.
  • Vande Velde C, Miller TM, Cashman NR, Cleveland DW (2008). Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc Natl Acad Sci U S A 105: 40224027.
  • Velasco-Sanchez D, Aracil A, Montero R, Mas A, Jimenez L, O'callaghan M et al. (2011). Combined therapy with idebenone and deferiprone in patients with Friedreich's ataxia. Cerebellum 10: 18.
  • Wakade C, Khan MM, De Sevilla LM, Zhang QG, Mahesh VB, Brann DW (2008). Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase. Endocrinology 149: 367379.
  • Wang MS, Boddapati S, Emadi S, Sierks MR (2010). Curcumin reduces alpha-synuclein induced cytotoxicity in Parkinson's disease cell model. BMC Neurosci 11: 57.
  • Weinreb O, Mandel S, Youdim MB (2003). cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities in human neuroblastoma cells. FASEB J 17: 935937.
  • Weitner T, Kos I, Sheng H, Tovmasyan A, Reboucas JS, Fan P et al. (2013). Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radic Biol Med 58: 7380.
  • Wilson RB, Roof DM (1997). Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat Genet 16: 352357.
  • Wise-Faberowski L, Warner DS, Spasojevic I, Batinic-Haberle I (2009). Effect of lipophilicity of Mn (III) ortho N-alkylpyridyl- and diortho N, N′-diethylimidazolylporphyrins in two in-vitro models of oxygen and glucose deprivation-induced neuronal death. Free Radic Res 43: 329339.
  • Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F et al. (1999). The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8: 425430.
  • Wu J, Li Q, Wang X, Yu S, Li L, Wu X et al. (2013). Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS ONE 8: e59843.
  • Xiao Z, Donnelly PS, Zimmermann M, Wedd AG (2008). Transfer of copper between bis(thiosemicarbazone) ligands and intracellular copper-binding proteins. Insights into mechanisms of copper uptake and hypoxia selectivity. Inorg Chem 47: 43384347.
  • Xun Z, Sowell RA, Kaufman TC, Clemmer DE (2008). Quantitative proteomics of a presymptomatic A53T alpha-synuclein Drosophila model of Parkinson disease. Mol Cell Proteomics 7: 11911203.
  • Yoshii Y, Yoneda M, Ikawa M, Furukawa T, Kiyono Y, Mori T et al. (2012). Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less rho0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Nucl Med Biol 39: 177185.
  • Yu L, Jia X, Derricka M, Drobyshevsky A, Liu T, Batinic-Haberle I et al. (2010). Testing new porphyrins in in vivo model systems: effect of Mn porphyrins in animal model of cerebral palsy. 6th International Conference on Porphyrins and Phthalocyanines, Book of Absracts. Albuquerque, USA.
  • Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A (1995). Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet 11: 155163.
  • Zhang X, Lemasters JJ (2013). Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radic Biol Med 63: 243253.
  • Zimmerman MC, Oberley LW, Flanagan SW (2007). Mutant SOD1-induced neuronal toxicity is mediated by increased mitochondrial superoxide levels. J Neurochem 102: 609618.