Get access

Phylogeography and biogeography of the lower Central American Neotropics: diversification between two continents and between two seas

Authors

  • Justin C. Bagley,

    Corresponding author
    1. Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT, U.S.A.
    Search for more papers by this author
  • Jerald B. Johnson

    1. Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT, U.S.A.
    2. Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, U.S.A.
    Search for more papers by this author

ABSTRACT

Lower Central America (LCA) provides a geologically complex and dynamic, richly biodiverse model for studying the recent assembly and diversification of a Neotropical biota. Here, we review the growing literature of LCA phylogeography studies and their contribution to understanding the origins, assembly, and diversification of the LCA biota against the backdrop of regional geologic and climatic history, and previous biogeographical inquiry. Studies to date reveal that phylogeographical signal within taxa of differing distributions reflects a diversity of patterns and processes rivalling the complexities of LCA landscapes themselves. Even so, phylogeography is providing novel insights into regional diversification (e.g. cryptic lineage divergences), and general evolutionary patterns are emerging. Congruent multi-taxon phylogeographic breaks are found across the Nicaraguan depression, Chorotega volcanic front, western and central Panama, and the Darién isthmus, indicating that a potentially shared history of responses to regional-scale (e.g. geological) processes has shaped the genetic diversity of LCA communities. By contrast, other species show unique demographic histories in response to overriding historical events, including no phylogeographic structure at all. These low-structure or incongruent patterns provide some evidence for a role of local, ecological factors (e.g. long-distance dispersal and gene flow in plants and bats) in shaping LCA communities. Temporally, comparative phylogeographical structuring reflects Pliocene–Pleistocene dispersal and vicariance events consistent with the timeline of emergence of the LCA isthmus and its major physiographic features, e.g. cordilleras. We emphasise the need to improve biogeographic inferences in LCA through in-depth comparative phylogeography projects capitalising on the latest statistical phylogeographical methods. While meeting the challenges of reconstructing the biogeographical history of this complex region, phylogeographers should also take up the critical service to society of applying their work to the conservation of its fascinating biodiversity.

Ancillary