• 1
    Bonner JC. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc 2010; 7: 13841.
  • 2
    Donaldson K, Murphy FA, Duffin R et al. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 2010; 7: 5.
  • 3
    Johnston HJ, Hutchison GR, Christensen FM et al. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 2010; 4: 20746.
  • 4
    Nagai H, Toyokuni S. Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch Biochem Biophys 2010; 502: 17.
  • 5
    Pacurari M, Castranova V, Vallyathan V. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A 2010; 73: 37895.
  • 6
    Tsuda H, Xu J, Sakai Y et al. Toxicology of engineered nanomaterials – a review of carcinogenic potential. Asian Pac J Cancer Prev 2009; 10: 97580.
  • 7
    Barrett JC. Cellular and molecular mechanisms of asbestos carcinogenicity: implications for biopersistence. Environ Health Perspect 1994; 102 (Suppl 5): 1923.
  • 8
    Miller BG, Searl A, Davis JM et al. Influence of fibre length, dissolution and biopersistence on the production of mesothelioma in the rat peritoneal cavity. Ann Occup Hyg 1999; 43: 15566.
  • 9
    Okada F. Beyond foreign-body-induced carcinogenesis: impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int J Cancer 2007; 121: 236472.
  • 10
    Stanton MF, Wrench C. Mechanisms of mesothelioma induction with asbestos and fibrous glass. J Natl Cancer Inst 1972; 48: 797821.
  • 11
    Walker C, Everitt J, Barrett JC. Possible cellular and molecular mechanisms for asbestos carcinogenicity. Am J Ind Med 1992; 21: 25373.
  • 12
    Yang H, Testa JR, Carbone M. Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr Treat Options Oncol 2008; 9: 14757.
  • 13
    Poland CA, Duffin R, Kinloch I et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008; 3: 4238.
  • 14
    Sakamoto Y, Nakae D, Fukumori N et al. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 2009; 34: 6576.
  • 15
    Takagi A, Hirose A, Nishimura T et al. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008; 33: 10516.
  • 16
    Takagi A, Hirose A, Futakuchi M et al. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci 2012; 103: 14404.
  • 17
    Ryman-Rasmussen JP, Cesta MF, Brody AR et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 2009; 4: 74751.
  • 18
    Mercer RR, Hubbs AF, Scabilloni JF et al. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 2010; 7: 28.
  • 19
    Murphy FA, Poland CA, Duffin R et al. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 2011; 178: 2587600.
  • 20
    Oka Y, Mitsui M, Kitahashi T et al. A reliable method for intratracheal instillation of materials to the entire lung in rats. J Toxicol Pathol 2006; 19: 1079.
  • 21
    Jackson P, Hougaard KS, Boisen AM et al. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: effects on liver DNA strand breaks in dams and offspring. Nanotoxicology 2012; 6: 486500.
  • 22
    Morimoto Y, Hirohashi M, Ogami A et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology 2012; 6: 58799.
  • 23
    Ogami A, Yamamoto K, Morimoto Y et al. Pathological features of rat lung following inhalation and intratracheal instillation of C(60) fullerene. Inhal Toxicol 2011; 23: 40716.
  • 24
    Xu J, Futakuchi M, Iigo M et al. Involvement of macrophage inflammatory protein 1alpha (MIP1alpha) in promotion of rat lung and mammary carcinogenic activity of nanoscale titanium dioxide particles administered by intra-pulmonary spraying. Carcinogenesis 2010; 31: 92735.
  • 25
    Yanagihara K, Tsumuraya M, Takigahira M et al. An orthotopic implantation mouse model of human malignant pleural mesothelioma for in vivo photon counting analysis and evaluation of the effect of S-1 therapy. Int J Cancer 2010; 126: 283546.
  • 26
    Adamson IY, Bakowska J, Bowden DH. Mesothelial cell proliferation after instillation of long or short asbestos fibers into mouse lung. Am J Pathol 1993; 142: 120916.
  • 27
    Sekhon H, Wright J, Churg A. Effects of cigarette smoke and asbestos on airway, vascular and mesothelial cell proliferation. Int J Exp Pathol 1995; 76: 4118.
  • 28
    Adamson IY, Prieditis H, Young L. Lung mesothelial cell and fibroblast responses to pleural and alveolar macrophage supernatants and to lavage fluids from crocidolite-exposed rats. Am J Respir Cell Mol Biol 1997; 16: 6506.
  • 29
    Li XY, Lamb D, Donaldson K. Mesothelial cell injury caused by pleural leukocytes from rats treated with intratracheal instillation of crocidolite asbestos or Corynebacterium parvum. Environ Res 1994; 64: 18191.
  • 30
    Murphy FA, Schinwald A, Poland CA et al. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol 2012; 9: 8.
  • 31
    Mutsaers SE, Whitaker D, Papadimitriou JM. Stimulation of mesothelial cell proliferation by exudate macrophages enhances serosal wound healing in a murine model. Am J Pathol 2002; 160: 68192.
  • 32
    Lechner JF, LaVeck MA, Gerwin BI et al. Differential responses to growth factors by normal human mesothelial cultures from individual donors. J Cell Physiol 1989; 139: 295300.
  • 33
    Wang Y, Faux SP, Hallden G et al. Interleukin-1beta and tumour necrosis factor-alpha promote the transformation of human immortalised mesothelial cells by erionite. Int J Oncol 2004; 25: 1738.
  • 34
    Choe N, Tanaka S, Xia W et al. Pleural macrophage recruitment and activation in asbestos-induced pleural injury. Environ Health Perspect 1997; 105(Suppl 5): 125760.
  • 35
    Viallat JR, Raybuad F, Passarel M et al. Pleural migration of chrysotile fibers after intratracheal injection in rats. Arch Environ Health 1986; 41: 2826.
  • 36
    Kohyama N, Suzuki Y. Analysis of asbestos fibers in lung parenchyma, pleural plaques, and mesothelioma tissues of North American insulation workers. Ann N Y Acad Sci 1991; 643: 2752.
  • 37
    Miserocchi G, Sancini G, Mantegazza F et al. Translocation pathways for inhaled asbestos fibers. Environ Health 2008; 7: 4.
  • 38
    NIOSH. Occupational exposure to carbon nanotubes and nanofibers. Curr Intelligence Bull 2010; 161-A: 1149.