• 1
    AICR. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington, DC: World Cancer Research Fund/American Institute for Cancer Research, 2007.
  • 2
    Otani T, Iwasaki M, Inoue M, Tsugane S. Body mass index, body height, and subsequent risk of colorectal cancer in middle-aged and elderly Japanese men and women: Japan public health center-based prospective study. Cancer Causes Control 2005; 16: 83950.
  • 3
    Inoue M, Noda M, Kurahashi N et al. Impact of metabolic factors on subsequent cancer risk: results from a large-scale population-based cohort study in Japan (JPHC Study). Eur J Cancer Prev 2009; 18: 2407.
  • 4
    Teraoka N, Mutoh M, Takasu S et al. High susceptibility to azoxymethane-induced colorectal carcinogenesis in obese KK-Ay mice. Int J Cancer 2011; 129: 52835.
  • 5
    Kondo K, Nozawa K, Romida T, Ezaki K. Inbred strains resulting from Japanese mice. Bull Exp Anim 1957; 6: 10712.
  • 6
    Nakamura M, Yamada K. Studies on a diabetic (KK) strain of the mouse. Diabetologia 1967; 3: 21221.
  • 7
    Mutoh M, Watanabe K, Kitamura T et al. Involvement of prostaglandin E receptor Subtype EP4 in colon carcinogenesis. Cancer Res 2002; 62: 2832.
  • 8
    Pozharisski KM. Tumours of the intestines. In: Turusov VS, ed. Pathology of Tumours in Laboratory Animals, IARC Scientific Publications no. 1. Lyon: IARC, 1973; 11940
  • 9
    Hata K, Kubota M, Shimizu M et al. Monosodium glutamate-induced diabetic mice are susceptible to azoxymethane-induced colon tumorigenesis. Carcinogenesis 2012; 33: 7027.
  • 10
    Nagel JM, Staffa J, Renner-Müller I et al. Insulin glargine and NPH insulin increase to a similar degree epithelial cell proliferation and aberrant crypt foci formation in colons of diabetic mice. Horm Cancer 2010; 1: 32030.
  • 11
    Tran TT, Naigamwalla D, Oprescu AI et al. Hyperinsulinemia, but not other factors associated with insulin resistance, acutelyenhances colorectal epithelial proliferation in vivo. Endocrinology 2006; 147: 18307.
  • 12
    Koohestani N, Tran TT, Lee W et al. Insulin resistance and promotion of aberrant crypt foci in the colons of rats on a high-fat diet. Nutr Cancer 1997; 29: 6976.
  • 13
    Ueno T, Teraoka N, Takasu S et al. Suppressive effect of pioglitazone, a PPAR gamma ligand, on azoxymethane-induced colon aberrant crypt foci in KK-Ay mice. Asian Pac J Cancer Prev 2012; 13: 406773.
  • 14
    Siddiqui AA. Metabolic syndrome and its association with colorectal cancer: a review. Am J Med Sci 2011; 341: 22731.
  • 15
    Herbey II, Ivankova NV, Katkoori VR et al. Colorectal cancer and hypercholesterolemia: review of current research. Exp Oncol 2005; 27: 16678.
  • 16
    Chang CK, Ulrich CM. Hyperinsulinaemia and hyperglycaemia: possible risk factors of colorectal cancer among diabetic patients. Diabetologia 2003; 46: 595607.
  • 17
    Takahashi M, Wakabayashi K. Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci 2004; 95: 47580.
  • 18
    Takayama T, Ohi M, Hayashi T et al. Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology 2001; 121: 599611.
  • 19
    Kukitsu T, Takayama T, Miyanishi K et al. Aberrant crypt foci as precursors of the dysplasia-carcinoma sequence in patients with ulcerative colitis. Clin Cancer Res 2008; 14: 4854.
  • 20
    Mori H, Hata K, Yamada Y et al. Significance and role of early-lesions in experimental colorectal carcinogenesis. Chem Biol Interact 2005; 155: 19.
  • 21
    Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 4226.
  • 22
    Araki Y, Okamura S, Hussain SP et al. Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 2003; 63: 72834.
  • 23
    He W, Tan R, Dai C et al. Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/beta-catenin signaling. J Biol Chem 2010; 285: 2466575.
  • 24
    Zins K, Abraham D, Sioud M, Aharinejad S. Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res 2007; 67: 103845.
  • 25
    Rao G, Wang H, Li B et al. Reciprocal interactions between tumor-associated macrophages and CD44 positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer. Clin Cancer Res 2013; 19: 78597.
  • 26
    Green CE, Liu T, Montel V et al. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS ONE 2009; 8: e6713.
  • 27
    Kaler P, Augenlicht L, Klampfer L. Macrophage-derived IL-1β stimulates Wnt signaling and growth of colon cancer cells; a crosstalk interrupted by vitamin D3. Oncogene, 2009; 28: 3892902.
  • 28
    Kaler P, Galea V, Augenlichi L et al. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1β-dependent stabilization of Snail in tumor cells. PLoS ONE, 2010; 5: e11700.
  • 29
    Kang J-C, Chen J-S, Lee C-H et al. Intratumoral macrophage counts correlate with tumor progression in colorectal cancer. J Surg Oncol, 2010; 102: 2428.