• 1
    Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006; 24: 213750.
  • 2
    Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJ. Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer 2002; 2: 37.
  • 3
    Choong N, Vokes E. Expanding role of the medical oncologist in the management of head and neck cancer. CA Cancer J Clin 2008; 58: 3253.
  • 4
    Gold KA, Lee HY, Kim ES. Targeted therapies in squamous cell carcinoma of the head and neck. Cancer 2009; 115: 92235.
  • 5
    Tejani MA, Cohen RB, Mehra R. The contribution of cetuximab in the treatment of recurrent and/or metastatic head and neck cancer. Biologics 2010; 4: 17385.
  • 6
    Goerner M, Seiwert TY, Sudhoff H. Molecular targeted therapies in head and neck cancer–an update of recent developments. Head Neck Oncol 2010; 2: 8.
  • 7
    Wang F, Arun P, Friedman J, Chen Z, Van Waes C. Current and potential inflammation targeted therapies in head and neck cancer. Curr Opin Pharmacol 2009; 9: 38995.
  • 8
    Kanazawa T, Nishino H, Hasegawa M et al. Interleukin-6 directly influences proliferation and invasion potential of head and neck cancer cells. Eur Arch Otorhinolaryngol 2007; 264: 81521.
  • 9
    Hill SJ. G-protein-coupled receptors: past, present and future. Br J Pharmacol 2006; 147(Suppl. 1): S2737.
  • 10
    Kanazawa T, Iwashita T, Kommareddi P et al. Galanin and galanin receptor type 1 suppress proliferation in squamous carcinoma cells: activation of the extracellular signal regulated kinase pathway and induction of cyclin-dependent kinase inhibitors. Oncogene 2007; 26: 576271.
  • 11
    Kanazawa T, Kommareddi PK, Iwashita T et al. Galanin receptor subtype 2 suppresses cell proliferation and induces apoptosis in p53 mutant head and neck cancer cells. Clin Cancer Res 2009; 15: 222230.
  • 12
    Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther 2007; 115: 177207.
  • 13
    Mitsukawa K, Lu X, Bartfai T. Galanin, galanin receptors and drug targets. Cell Mol Life Sci 2008; 65: 1796805.
  • 14
    Berger A, Santic R, Hauser-Kronberger C et al. Galanin and galanin receptors in human cancers. Neuropeptides 2005; 39: 3539.
  • 15
    Iishi H, Tatsuta M, Baba M et al. Inhibition by galanin of experimental carcinogenesis induced by azaserine in rat pancreas. Int J Cancer 1998; 75: 3969.
  • 16
    El-Salhy M, Starefeldt A. Direct effects of octreotide, galanin and serotonin on human colon cancer cells. Oncol Rep 2003; 10: 17238.
  • 17
    Tjomsland V, El-Salhy M. Effects of single, double or triple combinations of octreotide, galanin and serotonin on a human pancreatic cancer cell line. Histol Histopathol 2005; 20: 53741.
  • 18
    Kanazawa T, Misawa K, Carey TE. Galanin receptor subtypes 1 and 2 as therapeutic targets in head and neck squamous cell carcinoma. Expert Opin Ther Targets 2010; 14: 289302.
  • 19
    Henson BS, Neubig RR, Jang I et al. Galanin receptor 1 has anti-proliferative effects in oral squamous cell carcinoma. J Biol Chem 2005; 280(22): 56471.
  • 20
    Berger A, Lang R, Moritz K et al. Galanin receptor subtype GalR2 mediates apoptosis in SH-SY5Y neuroblastoma cells. Endocrinology 2004; 145: 5007.
  • 21
    Tofighi R, Joseph B, Xia S et al. Galanin decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 receptor (GalR2). Proc Natl Acad Sci USA 2008; 105: 271722.
  • 22
    Ozawa K. Gene therapy using AAV. Uirusu 2007; 57: 4755.
  • 23
    Mizukami H, Ozawa K. Utility of AAV vectors derived from novel serotypes. Yakugaku Zasshi 2006; 126: 10218.
  • 24
    Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12: 34155.
  • 25
    Muramatsu S, Fujimoto K, Kato S et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson's disease. Mol Ther 2010; 18: 17315.
  • 26
    Manno CS, Pierce GF, Arruda VR et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 3427.
  • 27
    Maguire AM, High KA, Auricchio A et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597605.
  • 28
    Kanazawa T, Mizukami H, Okada T et al. Suicide gene therapy using AAV-HSVtk/ganciclovir in combination with irradiation results in regression of human head and neck cancer xenografts in nude mice. Gene Ther 2003; 10: 518.
  • 29
    Li XP, Li CY, Li X et al. Inhibition of human nasopharyngeal carcinoma growth and metastasis in mice by adenovirus-associated virus-mediated expression of human endostatin. Mol Cancer Ther 2006; 5: 12908.
  • 30
    Jiang M, Liu Z, Xiang Y et al. Synergistic antitumor effect of AAV-mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma. BMC Cancer 2011; 11: 54.
  • 31
    Kanter-Schlifke I, Toft Sorensen A, Ledri M, Kuteeva E, Hokfelt T, Kokaia M. Galanin gene transfer curtails generalized seizures in kindled rats without altering hippocampal synaptic plasticity. Neuroscience 2007; 150: 98492.
  • 32
    Yamada T, Horiuchi M, Dzau VJ. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 1996; 93: 15660.
  • 33
    Huang XC, Richards EM, Sumners C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem 1996; 271(15): 63541.
  • 34
    Massa A, Barbieri F, Aiello C et al. The expression of the phosphotyrosine phosphatase DEP-1/PTPeta dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J Biol Chem 2004; 279(29): 00412.
  • 35
    Barbieri F, Pattarozzi A, Gatti M et al. Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase-eta-dependent inhibition of extracellularly regulated kinase-1/2. Endocrinology 2008; 149: 473646.
  • 36
    Fushimi K, Nakashima S, You F, Takigawa M, Shimizu K. Prostaglandin E2 downregulates TNF-alpha-induced production of matrix metalloproteinase-1 in HCS-2/8 chondrocytes by inhibiting Raf-1/MEK/ERK cascade through EP4 prostanoid receptor activation. J Cell Biochem 2007; 100: 78393.
  • 37
    Eisenmann KM, VanBrocklin MW, Staffend NA, Kitchen SM, Koo HM. Mitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad. Cancer Res 2003; 63: 83307.
  • 38
    Panka DJ, Wang W, Atkins MB, Mier JW. The Raf inhibitor BAY 43-9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 2006; 66: 16119.
  • 39
    Wang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P. Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res 2007; 13: 493442.
  • 40
    Wittau N, Grosse R, Kalkbrenner F, Gohla A, Schultz G, Gudermann T. The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins. Oncogene 2000; 19: 4199209.