SEARCH

SEARCH BY CITATION

References

  • 1
    Hirayama T. Descriptive and analytical epidemiology of nasopharyngeal cancer. IARC Sci Publ 1978; 20: 16789.
  • 2
    Anghel I, Anghel AG, Dumitru M, Soreanu CC. Nasopharyngeal carcinoma – analysis of risk factors and immunological markers. Chirurgia (Bucur) 2012; 107: 6405.
  • 3
    Chan AT. Nasopharyngeal carcinoma. Ann Oncol 2010; 21(Suppl 7): i30812.
  • 4
    Lee AW, Tung SY, Chua DT et al. Randomized trial of radiotherapy plus concurrent-adjuvant chemotherapy vs radiotherapy alone for regionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst 2010; 102: 118898.
  • 5
    Lo KW, Huang DP. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol 2002; 12: 45162.
  • 6
    Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003; 83: 731801.
  • 7
    Imajoh S, Kawasaki H, Suzuki K. The amino-terminal hydrophobic region of the small subunit of calcium-activated neutral protease (CANP) is essential for its activation by phosphatidylinositol. J Biochem 1986; 99: 12814.
  • 8
    Franco SJ, Huttenlocher A. Regulating cell migration: calpains make the cut. J Cell Sci 2005; 118: 382938.
  • 9
    Bhatt A, Kaverina I, Otey C, Huttenlocher A. Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J Cell Sci 2002; 115: 341525.
  • 10
    Beckerle MC, Burridge K, DeMartino GN, Croall DE. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell 1987; 51: 56977.
  • 11
    Wells A, Huttenlocher A, Lauffenburger DA. Calpain proteases in cell adhesion and motility. Int Rev Cytol 2005; 245: 116.
  • 12
    Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 2000; 20: 447481.
  • 13
    Cong J, Goll DE, Peterson AM, Kapprell HP. The role of autolysis in activity of the Ca2 + -dependent proteinases (mu-calpain and m-calpain). J Biol Chem 1989; 264: 10096103.
  • 14
    Dourdin N, Bhatt AK, Dutt P et al. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem 2001; 276(48): 3828.
  • 15
    Zimmerman UJ, Boring L, Pak JH, Mukerjee N, Wang KK. The calpain small subunit gene is essential: its inactivation results in embryonic lethality. IUBMB Life 2000; 50: 638.
    Direct Link:
  • 16
    Zhang F, Wang Q, Ye L, Feng Y, Zhang X. Hepatitis B virus X protein upregulates expression of calpain small subunit 1 via nuclear factor-kappaB/p65 in hepatoma cells. J Med Virol 2010; 82: 9208.
  • 17
    Zhang X, You X, Wang Q et al. Hepatitis B virus X protein drives multiple cross-talk cascade loops involving NF-kappaB, 5-LOX, OPN and Capn4 to promote cell migration. PLoS ONE 2012; 7: e31458.
  • 18
    Zhang C, Bai DS, Huang XY et al. Prognostic significance of Capn4 overexpression in intrahepatic cholangiocarcinoma. PLoS ONE 2013; 8: e54619.
  • 19
    Yang XY, Ren CP, Wang L et al. Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol 2005; 27: 21523.
  • 20
    Zhang ZW, He ZM, Zhou M, Ding W, Yu YH, Chen ZC. Mechanism of migration in CNE2 cells promoted by EBV-LMP1. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2006; 31: 4704.
  • 21
    Langlois B, Perrot G, Schneider C et al. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS ONE 2010; 5: e11584.
  • 22
    Tie J, Pan Y, Zhao L et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet 2010; 6: e1000879.
  • 23
    Jang HS, Lal S, Greenwood JA. Calpain 2 is required for glioblastoma cell invasion: regulation of matrix metalloproteinase 2. Neurochem Res 2010; 35: 1796804.
  • 24
    Lade A, Ranganathan S, Luo J, Monga SP. Calpain induces N-terminal truncation of beta-catenin in normal murine liver development: diagnostic implications in hepatoblastomas. J Biol Chem 2012; 287(22): 78998.
  • 25
    Jang YN, Jung YS, Lee SH, Moon CH, Kim CH, Baik EJ. Calpain-mediated N-cadherin proteolytic processing in brain injury. J Neurosci 2009; 29: 597484.
  • 26
    Kwak HI, Kang H, Dave JM et al. Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation. Angiogenesis 2012; 15: 287303.
  • 27
    Katsube M, Kato T, Kitagawa M, Noma H, Fujita H, Kitagawa S. Calpain-mediated regulation of the distinct signaling pathways and cell migration in human neutrophils. J Leukoc Biol 2008; 84: 25563.
  • 28
    El BA, El-Fadle AA, El-Balshy AL. Tissue inhibitor of matrix metalloproteinase-2 in nasopharyngeal carcinoma. MedGenMed 2007; 9: 3.
  • 29
    Wong TS, Kwong DL, Sham JS, Wei WI, Kwong YL, Yuen AP. Clinicopathologic significance of plasma matrix metalloproteinase-2 and -9 levels in patients with undifferentiated nasopharyngeal carcinoma. Eur J Surg Oncol 2004; 30: 5604.
  • 30
    Huang T, Chen MH, Wu MY, Wu XY. Correlation between expression of extracellular matrix metalloproteinase inducer and matrix metalloproteinase-2 and cervical lymph node metastasis of nasopharyngeal carcinoma. Ann Otol Rhinol Laryngol 2013; 122: 2105.
  • 31
    Yang EV, Sood AK, Chen M et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006; 66(10): 35764.
  • 32
    Demarchi F, Bertoli C, Greer PA, Schneider C. Ceramide triggers an NF-kappaB-dependent survival pathway through calpain. Cell Death Differ 2005; 12: 51222.
  • 33
    Li J, Lau GK, Chen L et al. Interleukin 17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression. PLoS ONE 2011; 6: e21816.
  • 34
    Franco SJ, Rodgers MA, Perrin BJ et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 2004; 6: 97783.
  • 35
    Carragher NO, Fonseca BD, Frame MC. Calpain activity is generally elevated during transformation but has oncogene-specific biological functions. Neoplasia 2004; 6: 5373.
  • 36
    Bai DS, Dai Z, Zhou J et al. Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology 2009; 49: 46070.
  • 37
    Rosenberger G, Gal A, Kutsche K. AlphaPIX associates with calpain 4, the small subunit of calpain, and has a dual role in integrin-mediated cell spreading. J Biol Chem 2005; 280: 687989.
  • 38
    Li SR, Dorudi S, Bustin SA. Identification of differentially expressed genes associated with colorectal cancer liver metastasis. Eur Surg Res 2003; 35: 32736.
  • 39
    Tonnetti L, Netzel-Arnett S, Darnell GA et al. SerpinB2 protection of retinoblastoma protein from calpain enhances tumor cell survival. Cancer Res 2008; 68: 564857.
  • 40
    Gupta GP, Massague J. Platelets and metastasis revisited: a novel fatty link. J Clin Invest 2004; 114: 16913.
  • 41
    Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006; 12: 895904.
  • 42
    Undyala VV, Dembo M, Cembrola K et al. The calpain small subunit regulates cell-substrate mechanical interactions during fibroblast migration. J Cell Sci 2008; 121: 35818.
  • 43
    Ye Y, Tian H, Lange AR, Yearsley K, Robertson FM, Barsky SH. The genesis and unique properties of the lymphovascular tumor embolus are because of calpain-regulated proteolysis of E-cadherin. Oncogene 2013; 32: 170213.
  • 44
    Rios-Doria J, Day KC, Kuefer R et al. The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem 2003; 278: 13729.
  • 45
    Cano A, Perez-Moreno MA, Rodrigo I et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 7683.
  • 46
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 5267.
  • 47
    Uraoka N, Oue N, Sakamoto N et al. NRD1, which encodes nardilysin protein, promotes esophageal cancer cell invasion through induction of MMP2 and MMP3 expression. Cancer Sci 2014; 105: 13440.
  • 48
    Zhu Q, Luo J, Wang T, Ren J, Hu K, Wu G. The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells. Oncol Rep 2012; 28: 25561.
  • 49
    Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res 2010; 20: 2433.
  • 50
    Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002; 109(Suppl): S8196.
  • 51
    Mayo MW, Baldwin AS. The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 2000; 1470: M5562.
  • 52
    Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001; 107: 2416.
  • 53
    Yang XC, Wang X, Luo L et al. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway. Eur Rev Med Pharmacol Sci 2013; 17: 166980.
  • 54
    Mercurio F, DiDonato JA, Rosette C, Karin M. p105 and p98 precursor proteins play an active role in NF-kappa B-mediated signal transduction. Genes Dev 1993; 7: 70518.
  • 55
    Kim SO, Kim MR. [6]-gingerol prevents disassembly of cell junctions and activities of MMPs in invasive human pancreas cancer cells through ERK/NF- kappa B/Snail signal transduction pathway. Evid Based Complement Alternat Med 2013; 2013: 761852.
  • 56
    Xie Y, Li Y, Peng X, Henderson FJ, Deng L, Chen N. Ikappa B kinase alpha involvement in the development of nasopharyngeal carcinoma through a NF-kappaB-independent and ERK-dependent pathway. Oral Oncol 2013; 49: 111320.
  • 57
    Chen CC, Liu HP, Chao M et al. NF-kappaB-mediated transcriptional upregulation of TNFAIP2 by the Epstein-Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene 2013. doi: 10.1038/onc.2013.345. [Epub ahead of print]
  • 58
    Sun W, Guo MM, Han P et al. Id-1 and the p65 subunit of NF-kappaB promote migration of nasopharyngeal carcinoma cells and are correlated with poor prognosis. Carcinogenesis 2012; 33: 8107.
  • 59
    Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 1998; 17: 17009.
  • 60
    Kieser A, Kilger E, Gires O, Ueffing M, Kolch W, Hammerschmidt W. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 1997; 16: 647885.
  • 61
    Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W. Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein-Barr virus. Cancer Res 2003; 63: 29829.
  • 62
    Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 1993; 90: 91504.
  • 63
    Mitchell T, Sugden B. Stimulation of NF-kappa B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J Virol 1995; 69: 296876.
  • 64
    Lavorgna A, Harhaj EW. EBV LMP1: new and shared pathways to NF-kappaB activation. Proc Natl Acad Sci USA 2012; 109: 21889.