• 1
    Jin Y., Hua J., Wu W., Ma X., Meng F. (2008) Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells. Synth Met;158:6471.
  • 2
    Zafer C., Kus M., Turkmen G., Dincalp H., Demic S., Kuban B. (2007) New perylene derivative dyes for dye-sensitized solar cells. Sol Energy Mater Sol Cells;91:427431.
  • 3
    Chiu T.L., Chuang K.H., Lin C.F., Ho Y.H., Lee J.H., Chao C.C. (2009) Low reflection and photo-sensitive organic light-emitting device with perylenediimide and double-metal structure. Thin Solid Films;517:37123716.
  • 4
    Wang X., Guo Y., Yang S., Wang C., Fu X., Wang J., Mao Y., Zhang J., Li Y. (2010) Cellular and molecular mechanisms of photodynamic hypericin therapy for nasopharyngeal carcinoma cells. J Pharmacol Exp Ther;334:847853.
  • 5
    Krishnamoorthy G., Webb S.P., Nguyen T., Chowdhury P.K., Halder M., Wills N.J., Carpenter S., Kraus G.A., Gordon M.S., Petrich J.W. (2005) Synthesis of hydroxy and methoxy perylene quinones, their spectroscopic and computational characterization, and their antiviral activity. Photochem Photobiol;81:924933.
  • 6
    Kubin A., Wierrani F., Burner U., Alth G., Grunberger W. (2005) Hypericin – the facts about a controversial agent. Curr Pharm Des;11:233253.
  • 7
    Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M. et al. (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin;61:250281.
  • 8
    Boiy A., Roelandts R., de Witte P.A. (2010) Photodynamic therapy using topically applied hypericin: comparative effect with methyl-aminolevulinic acid on UV induced skin tumours. J Photochem Photobiol, B;102:123131.
  • 9
    Gulick A.M., Fahl W.E. (1995) Forced evolution of glutathione S-transferase to create a more efficient drug detoxication enzyme. Proc Natl Acad Sci U S A;92:81408144.
  • 10
    Isgor Y.G., Isgor B.S. (2011) Kinases and glutathione transferases: selective and sensitive targeting. Front Biol;6:156169.
  • 11
    Di Pietro G., Magno L., Rios-Santos F. (2010) Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol;6:153170.
  • 12
    Hayes J.D., Flanagan J.U., Jowsey I.R. (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol;45:5188.
  • 13
    Okamura T., Singh S., Buolamwini J., Haystead T., Friedman H., Bigner D., Ali-Osman F. (2009) Tyrosine phosphorylation of the human glutathione S-transferase P1 by epidermal growth factor receptor. J Biol Chem;284:1697916989.
  • 14
    Hosono N., Kishi S., Iho S., Urasaki Y., Yoshida A., Kurooka H., Yokota Y., Ueda T. (2010) Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Sci;101:767773.
  • 15
    Singh S., Okamura T., Ali-Osman F. (2010) Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCalpha enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol;80:13431355.
  • 16
    Desmots F., Rissel M., Gilot D., Lagadic-Gossmann D., Morel F., Guguen-Guillouzo C., Guillouzo A., Loyer P. (2002) Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem;277:1789217900.
  • 17
    Kim S.G., Lee S.J. (2007) PI3K, RSK, and mTOR signal networks for the GST gene regulation. Toxicol Sci;96:206213.
  • 18
    Chan P.S., Koon H.K., Wu Z.G., Wong R.N., Lung M.L., Chang C.K., Mak N.K. (2009) Role of p38 MAPKs in hypericin photodynamic therapy-induced apoptosis of nasopharyngeal carcinoma cells. Photochem Photobiol;85:12071217.
  • 19
    Du H.Y., Olivo M., Tan B.K., Bay B.H. (2004) Photoactivation of hypericin down-regulates glutathione S-transferase activity in nasopharyngeal cancer cells. Cancer Lett;207:175181.
  • 20
    Dabrowski M.J., Maeda D., Zebala J., Lu W.D., Mahajan S., Kavanagh T.J., Atkins W.M. (2006) Glutathione S-transferase P1-1 expression modulates sensitivity of human kidney 293 cells to photodynamic therapy with hypericin. Arch Biochem Biophys;449:94103.
  • 21
    Chang Y., Wang S.J. (2010) Hypericin, the active component of St. John’s wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway. Eur J Pharmacol;634:5361.
  • 22
    Tuna G., Kulaksiz Erkmen G., Dalmizrak O., Dogan A., Ogus I.H., Ozer N. (2011) Inhibition characteristics of hypericin on rat small intestine glutathione-S-transferases. Chem Biol Interact;188:5965.
  • 23
    Belsches-Jablonski A.P., Demory M.L., Parsons J.T., Parsons S.J. (2005) The Src pathway as a therapeutic strategy. Drug Discov Today;2:313321.
  • 24
    Yukruk F., Dogan A.L., Canpinar H., Guc D., Akkaya E.U. (2005) Water-soluble green perylenediimide (PDI) dyes as potential sensitizers for photodynamic therapy. Org Lett;7:28852887.
  • 25
    Yukruk F., Akkaya E.U. (2005) Modulation of internal charge transfer (ICT) in a bay region hydroxylated perylenediimide (PDI) chromophore: a chromogenic chemosensor for pH. Tetrahedron Lett;46:59315933.
  • 26
    Yukruk F. (2006) Optical fluoride sensing with a Bay region functionalized perylenediimide dye. Turk J Chem;30:455460.
  • 27
    Qu J., Kohl C., Pottek M., Müllen K. (2004) Ionic perylenetetracarboxdiimides: highly fluorescent and water-soluble dyes for biolabeling. Angew Chem Int Ed;43:15281531.
  • 28
    Habig W.H., Jakoby W.B. (1981) Glutathione S-transferases (rat and human). Methods Enzymol;77:218231.
  • 29
    Geylan-Su Y.S., Isgor B., Coban T., Kapucuoglu N., Aydintug S., Iscan M., Guray T. (2006) Comparison of NAT1, NAT2 and GSTT2-2 activities in normal and neoplastic human breast tissues. Neoplasma;53:7378.
  • 30
    Isgor B.S., Coruh N., Iscan M. (2010) Soluble glutathione S-transferases in bovine liver: existence of GST T2. J Biol Sci;10:667675.
  • 31
    Isgor B.S., Isgor Y.G. (2012) Effect of alpha-1-adrenoceptor blocker on cytosolic enzyme targets for potential use in cancer chemotherapy. Int J Pharm;8:333343.