• 1
    Nayana R.S., Bommisetty S.K., Singh K., Bairy S.K., Nunna S., Pramod A., Muttineni R. (2009) Structural analysis of carboline derivatives as inhibitors of MAPKAP K2 using 3D QSAR and docking studies. J Chem Inf Model;49:5367.
  • 2
    Vainio M.J., Puranen J.S., Johnson M.S. (2009) ShaEP: molecular overlay based on shape and electrostatic potential. J Chem Inf Model;49:492502.
  • 3
    Nam K., Gao J.L., York D.M. (2008) Electrostatic interactions in the hairpin ribozyme account for the majority of the rate acceleration without chemical participation by nucleobases. RNA;14:15011507.
  • 4
    Daga P.R., Doerksen R.J. (2008) Stereoelectronic properties of spiroquinazolinones in differential PDE7 inhibitory activity. J Comput Chem;29:19451954.
  • 5
    Waller C.L., Marshall G.R. (1993) Three-dimensional quantitative structure-activity relationship of angiotesin-converting enzyme and thermolysin inhibitors. II. A comparison of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor-field alignment rules. J Med Chem;36:23902403.
  • 6
    Navajasra C., POSO A., Tuppurainenb T., Gynthe J. (1996) Comparative molecular field analysis (CoMFA) of NIX compounds using different semi-empirical methods: LUMO field and its correlation with mutagenic activity. Quant Struct Act Relat;5:189193.
  • 7
    Ruiz J., Pe′rez C., Pouplana R. (2003) QSAR study of dual cyclooxygenase and 5-lipoxygenase inhibitors 2, 6-di-tert-butylphenol derivatives. Bioorg Med Chem;11:42074216.
  • 8
    Díaz L., Bujons J., Delgado A., Guti H., Åqvist J. (2011) Computational prediction of structure-activity relationships for the binding of aminocyclitols to β-glucocerebrosidase. J Chem Inf Model;51:601611.
  • 9
    Caughey G.H., Raymond W.W., Wolters P.J. (2000) Angiotensin II generation by mast cell α- and β-chymases. Biochim Biophys Acta;1480:245257.
  • 10
    Amano N., Takai S., Jin D., Ueda K., Miyazaki M. (2009) Possible roles of mast cell-derived chymase for skin rejuvenation. Lasers Med Sci;24:223229.
  • 11
    Takai S., Miyazaki M. (2005) Inhibition of transforming growth factor- activation is a novel effect of chymase inactivation. Lett Drug Des Discov;2:1922.
  • 12
    Omoto Y., Tokime K., Yamanaka K., Habe K., Morioka T., Kurokawa I., Tsutsui H., Yamanishi K., Nakanishi K., Mizutani H. (2006) Human mast cell chymase cleaves Pro-IL-18 and generates a novel and biologically active IL-18 fragment. J Immunol;177:83158319.
  • 13
    Huang X.R., Chen W.Y., Truong L.D., Lan H.Y. (2003) Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol;14:17381747.
  • 14
    Garavilla L.D., Greco M.N., Sukumar N., Chen Z., Pineda A.O., Mathews F.S., Cera E.D. et al. (2005) A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase. J Biol Chem;280:1800118007.
  • 15
    Powers J.C., Tanaka T., Harper J.W., Minematsu Y., Baker L., Lincoln D., Crumley K.V. (1985) Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry;24:20482058.
  • 16
    Burzycki T.A., Hoover K.W., Thomsen D.L., Sneddon S.F., Rauch A.L., Hoover D.J. (1993) IBC conference on developmental therapy for hypertension: beyond ACE inhibitors and calcium antagonists. Philadelphia.
  • 17
    Bastos M., Maeji N.J., Abeles R.H. (1995) Inhibitors of human heart chymase based on a peptide library. Proc Natl Acad Sci USA;92:67386742.
  • 18
    Greco M.N., Hawkins M.J., Powell E.T., Almond H.R., Garavilla L., Hall J., Minor L.K., Wang Y., Corcoran T.W., Cera E.D., Cantwell A.M., Savvides S.N., Damiano B.P., Maryanoff B.E. (2007) Discovery of potent, selective, orally active, nonpeptide inhibitors of human mast cell chymase. J Med Chem;50:17271730.
  • 19
    Iijima K., Katada J., Yasuda E., Uno I., Hayashi Y. (1999) N-[2,2-Dimethyl-3-(N-(4-Cyanobenzoyl)Amino)Nonanoyl]-L-Phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of α-chymotrypsin. J Med Chem;42:312323.
  • 20
    Aoyama Y., Uenaka M., Kii M., Tanaka M., Konoike T., Hayasaki-Kajiwara Y., Naya N., Nakajima M. (2001) Design, synthesis and pharmacological evaluation of 3-benzylazetidine-2-one-based human chymase inhibitors. Bioorg Med Chem;9:30653075.
  • 21
    Aoyama Y., Uenaka M., Konoike T., Hayasaki-Kajiwara Y., Naya N., Nakajima M. (2001) Inhibition of serine proteases: activity of 1, 3-Diazetidine-2, 4-diones. Bioorg Med Chem Lett;11:16911694.
  • 22
    Aoyama Y., Konoike T., Kanda A., Naya N., Nakajima M. (2001) Total synthesis of human chymase inhibitor methyllinderone and structure–activity relationships of its derivatives. Bioorg Med Chem Lett;11:16951697.
  • 23
    Hayashi Y., Iijima K., Katada J., Kiso Y. (2000) Structure-activity relationship studies of chloromethyl ketone derivatives for selective human chymase inhibitors. Bioorg Med Chem Lett;10:199201.
  • 24
    Aoyama Y., Uenaka M., Konoike T., Iso Y., Nishitani Y., Kanda A., Naya N., Nakajima M. (2000) Synthesis and structure-activity relationships of a new class of 1-oxacephem-based human chymase inhibitors. Bioorg Med Chem Lett;10:23972401.
  • 25
    Niwata S., Fukami H., Sumida M., Ito A., Kakutani S., Saitoh M., Suzuki K. et al. (1997) Substituted 3-(Phenylsulfonyl)-1-phenylimidazolidine-2,4-dione derivatives as novel nonpeptide inhibitors of human heart chymase. J Med Chem;40:21562163.
  • 26
    Iijima K., Katada J., Hayashi Y. (1999) Symmetrical anhydride-type serine protease inhibitors:structure-activity relationship studies of human chymase inhibitors. Bioorg Med Chem Lett;9:413418.
  • 27
    Tanaka T., Muto T., Maruoka H., Imajo S., Fukami H., Tomimori Y., Fukudaa Y., Nakatsuka T. (2007) Identification of 6-substituted 4-arylsulfonyl-1,4-diazepane- 2,5-diones as a novel scaffold for human chymase inhibitors. Bioorg Med Chem Lett;17:34313434.
  • 28
    Maruoka H., Muto T., Tanaka T., Imajo S., Tomimori Y., Fukudaa Y., Nakatsuka T. (2007) Development of 6-benzyl substituted 4-aminocarbonyl-1,4- diazepane-2,5-diones as orally active human chymase inhibitors. Bioorg Med Chem Lett;17:34353439.
  • 29
    Wawer M., Bajorath J. (2010) Similarity-potency trees: a method to search for SAR information in compound data sets and derive SAR rules. J Chem Inf Model;50:13951409.
  • 30
    Thangapandian S., John S., Sakkiah S., Lee K.L. (2011) Molecular docking and pharmacophore filtering in the discovery of dual-inhibitors for human leukotriene A4 hydrolase and leukotriene C4 synthase. J Chem Inf Model;51:3344.
  • 31
    Lie M.A., Thomsen R., Pedersen C.N.S., Schiøtt B., Christensen M.H. (2011) Molecular docking with ligand attached water molecules. J Chem Inf Model;5:909917.
  • 32
    Liu T.Q., Lin Y.M., Wen X., Jorissen R.N., Gilson M.K. (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res;35:D198D201.
  • 33
    Hartshorn M.J., Verdonk M.L., Chessari G., Brewerton S.C., Mooij W.T.M., Mortenson P.N., Murray C.W. (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem;50:726741.
  • 34
    Cole J.C., Nissink J.W.M., Taylor R. (2005) Protein-ligand docking and virtual screening with GOLD. In: Shoichet B., Alvarez J., editors. Virtual Screening in Drug Discovery. Boca Raton, FL, USA: Taylor & Francis CRC Press.
  • 35
    Yaozong Li., Jie S., Xianqiang S., Weihua L., Guixia L., Yun T. (2010) Accuracy assessment of protein-based docking programs against RNA targets. J Chem Inf Model;50:11341146.
  • 36
    Lee C., Yang W., Parr R.G. (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev;37:785789.
  • 37
    Kenny P.W. (2009) Hydrogen bonding, electrostatic potential, and molecular design. J Chem Inf Model;49:12341244.
  • 38
    Dehez F., Pebay-Peyroula E., Chipot C. (2008) Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J Am Chem Soc;130:1272512733.
  • 39
    Rogers D., Hopfinger A.J. (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci;34:854866.
  • 40
    Richon A.B., Young S.S. (1997) An Introduction to QSAR Methodology. Saluda, NC: Network Science Corporation.
  • 41
    Golbraikh A., Tropsha A. (2002) Beware of q2!. J Mol Graph Model;20:269276.
  • 42
    Arooj M., Thangapandian S., John S., Hwang S., Park J.K., Lee K.W. (2011) 3D QSAR pharmacophore modeling, in silico screening, and density functional theory (DFT) approaches for identification of human chymase inhibitors. Int J Mol Sci;12:92369264.
  • 43
    Greco M., Hawkins M., Garavilla L.D., Powell E., Maryanoff B.E. (2008) Patent US20080096844 A1.