• 1
    Doering T. (1999) Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem;274:1103811045.
  • 2
    Ghadially R., Brown B.E., Sequeira-Martin S.M., Feingold K.R., Elias P.M. (1995) The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest;95:22812290.
  • 3
    Proksch E., Holleran W.M., Menon G.K., Elias P.M., Feingold K.R. (1993) Barrier function regulates epidermal lipid and DNA synthesis. Br J Dermatol;128:473482.
  • 4
    Haftek M., Callejon S., Sandjeu Y., Padois K., Falson F., Pirot F., Portes P., Demarne F., Jannin V. (2011) Compartmentalization of the human stratum corneum by persistent tight junction-like structures. Exp Dermatol;20:617621.
  • 5
    Liu P., Cettina M. (2009) Effects of isopropanol–isopropyl myristate binary enhancers on in vitro transport of estradiol in human epidermis: a mechanistic evaluation. J Pharm Sci;98:565572.
  • 6
    Cohen-Avrahami M., Aserin A., Garti N. (2010) HII mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf B Biointerfaces;77:131138.
  • 7
    Simons E.J., Bellas E., Lawlor M.W., Kohane D.S. (2009) Effect of chemical permeation enhancers on nerve blockade. Mol Pharm;6:265273.
  • 8
    Prausnitz M.R., Langer R. (2008) Transdermal drug delivery. Nat Biotechnol;26:12611268.
  • 9
    Sivakumar M., Tachibana K., Pandit A.B., Yasui K., Tuziuti T., Towata A. et al. (2005) Transdermal drug delivery using ultrasound ? Theory, understanding and critical analysis. Cell Mol Biol;51:OL767OL772.
  • 10
    Wong T.W., Ko S.F., Hui S.W. (2008) Enhancing transdermal drug delivery with electroporation. Recent Pat Drug Deliv Formul;2:17.
  • 11
    Manchanda R., Fernandez-Fernandez A., Nagesetti A., McGoron A.J. (2010) Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids Surf B;75:260267.
  • 12
    Fang J.Y., Hwang T.L., Huang Y.L. (2006) Liposomes as vehicles for enhancing drug delivery via skin routes. Curr Nanosci;2:5570.
  • 13
    Maghraby G.M.E. (2010) Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. Colloids Surf B;75:595600.
  • 14
    Goebel A., Neubert R.H.H. (2008) Dermal peptide delivery using colloidal carrier systems. Skin Pharmacol Physiol;21:39.
  • 15
    Farboud E.S., AhmadNasrollahi S., Tabbakhi Z. (2011) Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int J Nanomed;6:611617.
  • 16
    Sudaxshina M. (2005) Organogels in drug delivery. Expert Opin Drug Deliv;2:489505.
  • 17
    Doktorovova S., Souto E.B. (2009) Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin Drug Deliv;6:165176.
  • 18
    Kumari A., Yadav S.K., Yadav S.C. (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf;75:118.
  • 19
    Liaw J., Lin Y.C. (2000) Evaluation of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) gels as a release vehicle for percutaneous fentanyl. J Control Release;68:273282.
  • 20
    Lopes L.B., Brophy C.M., Furnish E., Flynn C.R., Sparks O., Komalavilas P. et al. (2005) Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res;22:750756.
  • 21
    Mae M., Langel U. (2006) Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol;6:509514.
  • 22
    Baoum A., Ovcharenko D., Berkland C. (2011) Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing. Int J Pharm;427:134142.
  • 23
    Kilk K. (2009) Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling. Toxicology;265:8795.
  • 24
    Langel Ü. (2011) Cell-penetrating peptides: methods and protocols. Methods Mol Biol;683:195205.
  • 25
    Jones A., Sayers E. (2012) Cell entry of cell penetrating peptides: tales wagging dogs. J Control Release;161:582591.
  • 26
    Jarver P., Langel U. (2006) Cell-penetrating peptides-a brief introduction. Biochim Biophys Acta;1758:260263.
  • 27
    El-Andaloussi S., Holm T., Langel U. (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des;11:35973611.
  • 28
    Lehto T., Kurrikoff K., Langel Ü. (2012) Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv;9:823836.
  • 29
    Green M., Loewenstein P.M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell;55:11791188.
  • 30
    Vives E., Brodin P., Lebleu B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem;272:1601016017.
  • 31
    Joliot A., Pernelle C., Deagostini-Bazin H., Prochiantz A. (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Nat Acad Sci USA;88:18641868.
  • 32
    Joliot A.H., Triller A., Volovitch M., Pernelle C., Prochiantz A. (1991) α-2,8-polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol;3:11211134.
  • 33
    Derossi D., Joliot A.H., Chassaing G., Prochiantz A. (1994) The third helix of the antennapedia homeodomain translocates through biological membranes. J Biol Chem;269:1044410450.
  • 34
    Derossi D., Calvet S., Trembleau A., Brunissen A., Chassaing G., Prochiantz A. (1996) Cell internalization of the third helix of the antennapedia homeodomain is receptor independent. J Biol Chem;271:1818818193.
  • 35
    Joliot A., Prochiantz A. (2004) Transduction peptides: from technology to physiology. Nat Cell Biol;6:189196.
  • 36
    Fawell S., Seery J., Daikh Y., Moore C., Chen L.L., Pepinsky B. et al. (1994) Tat mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA;91:664668.
  • 37
    Brooks N.A., Pouniotis D.S., Tang C.-K., Apostolopoulos V., Pietersz G.A. (2010) Cell-penetrating peptides: application in vaccine delivery. Biochim Biophys Acta;1805:2534.
  • 38
    Chiu Y.L., Ali A., Chu C.Y., Cao H., Rana T.M. (2004) Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol;11:11651175.
  • 39
    Rothbard J.B., Garlington S., Lin Q., Kirschberg T., Kreider E., McGrane P.L. et al. (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med;6:12531257.
  • 40
    Wender P.A., Mitchell D.J., Pattabiraman K., Pelkey E.T., Steinman L., Rothbard J.B. (2000) The design, synthesis and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci USA;97:1300313008.
  • 41
    Pooga M., Hallbrink M., Zorko M., Langel Ü. (1998) Cell penetration by transportan. FASEB J;15:14511453.
  • 42
    Meade B.R., Dowdy S.F. (2007) Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev;59:134140.
  • 43
    Morris M.C., Vidal P., Chaloin L., Heitz F., Divita G. (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res;25:27302736.
  • 44
    Morris M.C., Chaloin L., Mery J., Heitz F., Divita G. (1999) A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Res;27:35103517.
  • 45
    Simeoni F., Morris M.C., Heitz F., Divita G. (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res;31:27172724.
  • 46
    Morris M.C., Depollier J., Mery J., Heitz F., Divita G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol;19:11731176.
  • 47
    Deshayes S., Gerbal-Chaloin S., Morris M.C., Aldrian-Herrada G., Charnet P., Divita G. et al. (2004) On the mechanism of non-endosomal peptide-mediated cellular delivery of nucleic acids. Biochim Biophys Acta;1667:141147.
  • 48
    Deshayes S., Heitz A., Morris M.C., Charnet P., Divita G., Heitz F. (2004) Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry;43:14491457.
  • 49
    AhmadNasrollahi S., Fouladdel S., Taghibiglou C., Azizi E., Farboud E.S. (2012) A peptide carrier for the delivery of elastin into fibroblast cells. Int J Dermatol;51:923929.
  • 50
    Fonseca S.B., Pereira M.P., Kelley S.O. (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev;61:953964.
  • 51
    Patel L.N., Zaro J.L., Shen W.-C. (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res;24:19771992.
  • 52
    Vivès E., Schmidt J., Pèlegrin A. (2008) Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta;1786:126138.
  • 53
    Matsuzaki K., Yoneyama S., Murase O., Miyajima K. (1996) Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry;35:84508456.
  • 54
    Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry;31:1241612423.
  • 55
    Lee M.T., Hung W.C., Chen F.Y., Huang H.W. (2005) Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys J;89:40064016.
  • 56
    Vives E., Richard J.P., Rispal C., Lebleu B. (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci;4:125132.
  • 57
    Brooks H., Lebleu B., Vives E. (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev;57:559577.
  • 58
    Nakase I., Tadokoro A., Kawabata N., Takeuchi T., Katoh H., Hiramoto K. et al. (2007) Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry;46:492501.
  • 59
    Rusnati M., Tulipano G., Spillmann D., Tanghetti E., Oreste P., Zoppetti G. et al. (1999) Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. J Biol Chem;274:2819828205.
  • 60
    Lewin M., Carlesso N., Tung C.H., Tang X.W., Cory D., Scadden D.T. et al. (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol;18:410414.
  • 61
    Holm T., Netzereab S., Hansen M., Langel U., Hällbrink M. (2005) Uptake of cell-penetrating peptides in yeasts. FEBS Lett;579:52175222.
  • 62
    Yokoyama M., Koh J., Choi D.W. (1986) Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett;71:351355.
  • 63
    Tonder N., Johansen F.F., Frederickson C.J., Zimmer J., Diemer N.H. (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett;109:247252.
  • 64
    Koh J.Y., Suh S.W., Gwag B.J., He Y.Y., Hsu C.Y., Choi D.W. (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science;272:10131016.
  • 65
    Perkins D.J. (1953) A study of the effect of amino acid structure on the stabilities of the complexes formed with metals of group II of the periodic classification. Biochem J;55:649652.
  • 66
    Finney L.A., O’Halloran T.V. (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science;300:931936.
  • 67
    Deshayes S., Morris M., Heitz F., Divita G. (2008) Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev;60:537547.
  • 68
    Madani F., Lindberg S., Langel U., Futaki S., Graslund A. (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys;2011:110.
  • 69
    Doherty G.J., McMahon H.T. (2009) Mechanisms of endocytosis. Annu Rev Biochem;78:857902.
  • 70
    Richard J.P., Melikov K., Brooks H., Prevot P., Lebleu B., Chernomordik L.V. (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem;280:1530015306.
  • 71
    Kaplan I.M., Wadia J.S., Dowdy S.F. (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release;102:247253.
  • 72
    Potocky T.B., Menon A.K., Gellman S.H. (2003) Cytoplasmic and nuclear delivery of a TAT-derived peptide and a betapeptide after endocytic uptake into HeLa cells. J Biol Chem;278:5018850194.
  • 73
    Wadia J.S., Stan R.V., Dowdy S.F. (2004) Transducible TATHA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med;10:310315.
  • 74
    Drin G., Cottin S., Blanc E., Rees A.R., Temsamani J. (2003) Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem;278:3119231201.
  • 75
    Ferrari A., Pellegrini V., Arcangeli C., Fittipaldi A., Giacca M., Beltram F. (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther;8:284294.
  • 76
    Simpson C.L., Patel D.M., Green K.J. (2011) Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol;12:565580.
  • 77
    Madison K.C. (2003) Barrier function of the skin: ‘La Raison d’etre’ of the epidermis. J Invest Dermatol;121:231241.
  • 78
    Hou Y.-W., Chan M.-H., Hsu H.-R., Liu B.R., Chen C.-P., Chen H.-H. et al. (2007) Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol;16:9991006.
  • 79
    Godin B., Touitou E. (2004) Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Release;94:365379.
  • 80
    Foldvari M., Baca-Estrada M.E., He Z., Hu J., Attah-Poku S., King M. (1999) Dermal and transdermal delivery of protein pharmaceuticals: lipid-based delivery systems for interferon-α. Biotechnol Appl Biochem;30:129137.
  • 81
    Lintner K., Peschard O. (2000) Biologically active peptides: from a laboratory bench curiosity to function skin care product. Int J Cosmet Sci;22:207218.
  • 82
    Carr M., Chavez-Muñoz C., Lai A., Ghahary A. (2011) Dermal fibroblasts influence the expression profile of 14-3-3 proteins in human keratinocytes. Mol Cell Biochem;353:205214.
  • 83
    Kilani R.T., Guilbert L., Lin X., Ghahary A. (2007) Keratinocyte conditioned medium abrogates the modulatory effects of IGF-1 and TGF-beta1 on collagenase expression in dermal fibroblasts. Wound Repair Regen;15:236244.
  • 84
    Partidos C.D., Beignon A.S., Mawas F., Belliard G., Briand J.P., Muller S. (2003) Immunity under the skin: potential application for topical delivery of vaccines. Vaccine;21:776780.
  • 85
    Cohen-Avrahami M., Libster D., Aserin A., Garti N. (2012) Penetratin-induced transdermal delivery from HII mesophases of sodium diclofenac. J Control Release;159:419428.
  • 86
    Cohen-Avrahami M., Libster D., Aserin A., Garti N. (2011) Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: physical characterization and delivery. J Phys Chem B;115:1018910197.
  • 87
    Schutze-Redelmeier M.P.M., Kong S., Bally M.B., Dutz J.P. (2004) Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine;22:19851991.
  • 88
    Manosroi J., Lohcharoenkal W., Götz F., Werner R., Manosroi W., Manosroi A. (2012) Transdermal absorption and stability enhancement of salmon calcitonin by Tat peptide. Drug Dev Ind Pharm;doi: 10.3109/03639045.2012.684388a.
  • 89
    Kim D.W., Kim S.Y., An J.J., Lee S.H., Jang S.H., Won M.H. et al. (2006) Expression, purification and transduction of PEP-1-Botulinum neurotoxin Type A (PEP-1-BoNT/A) into skin. J Biochem Mol Biol;36:642647.
  • 90
    Eum W.S., Kim D.W., Hwang I.K., Yoo K.-Y., Kang T.-C., Jang S.H. et al. (2004) In vivo protein transduction: biologically active intact pep-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic Biol Med;37:16561669.
  • 91
    Kim S.Y., Sohn E.J., Kim D.W., Jeong H.J., Kim M.J., Kang H.W. et al. (2011) Transduced PEP-1-FK506BP ameliorates atopic dermatitis in NC/Nga mice. J Invest Dermatol;131:14771485.
  • 92
    Chen Y., Shen Y., Guo X., Zhang C., Yang W., Ma M. et al. (2006) Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol;24:455460.
  • 93
    Sawant R., Torchilin V. (2010) Intracellular transduction using cell-penetrating peptides. Mol BioSyst;6:628640.
  • 94
    Desai P., Patlolla R., Singh M. (2010) Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol;27:247259.
  • 95
    Sawant R., Torchilin V. (2011) Intracellular delivery of nanoparticles with CPPs. Methods Mol Biol;683:431451.
  • 96
    Patlolla R.R., Desai P.R., Belay K., Singh M.S. (2010) Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials;31:55985607.
  • 97
    Nair B.G., Fukuda T., Mizuki T., Hanajiri T., Maekawa T. (2012) Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis. Biochem Biophys Res Commun;421:763767.
  • 98
    Shah P., Desai P., Channer D., Singh M. (2012) Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release;161:735745.
  • 99
    Hoyer J., Neundorf I. (2012) Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res;45:10481056.
  • 100
    Endoh T., Ohtsuki T. (2009) Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev;61:704709.
  • 101
    Fonseca S., Pereira M., Kelley S. (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev;61:953964.
  • 102
    Eguchi A., Meade B., Chang Y., Fredrickson C., Willert K., Puri N. et al. (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol;27:567571.
  • 103
    Uchida T., Kanazawa T., Takashima Y., Okada H. (2011) Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chem Pharm Bull;59:196201.
  • 104
    Uchida T., Kanazawa T., Kawai M., Takashima Y., Okada H. (2011) Therapeutic effects on atopic dermatitis by anti-RelA short interfering RNA combined with functional peptides Tat and AT1002. J Pharmacol Exp Ther;338:443450.
  • 105
    Schaefer H., Redelmeier T.E. (1996) Skin Barrier. Principles of Percutaneous Absorption. Basel: Karger.
  • 106
    Ohtake K., Maeno T., Ueda H., Natsume H., Morimoto Y. (2003) Poly-l-arginine predominantly increases the paracellular permeability of hydrophilic macromolecules across rabbit nasal epithelium in vitro. Pharm Res;20:153160.
  • 107
    Ohtake K., Maeno T., Ueda H., Ogihara M., Natsume A., Morimoto Y. (2003) Poly-l-arginine enhances paracellular permeability via serine/threonine phosphorylation of ZO-1 and tyrosine dephosphorylation of occludin in rabbit nasal epithelium. Pharm Res;20:18381845.
  • 108
    Lopes L.B., Furnish E., Komalavilas P., Seal B.L., Panitch A., Bentley M.V. et al. (2008) Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm;68:441445.
  • 109
    Morita K., Myachi Y. (2003) Tight junctions in the skin. J Dermatol Sci;31:8189.