SEARCH

SEARCH BY CITATION

References

  • 1
    Newman D.J. (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem;51:25892599.
  • 2
    Ganesan A. (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol;12:306317.
  • 3
    Clark R.L., Johnston B.F., Mackay S.P., Breslin C.J., Robertson M.N., Harvey A.L. (2010) The drug discovery portal: a resource to enhance drug discovery from academia. Drug Discovery Today;15:679683.
  • 4
    Li J.W.-H., Vederas J.C. (2009) Drug discovery and natural products: end of an era or an endless frontier? Science;325:161165.
  • 5
    Harvey A.L. (2008) Natural products in drug discovery. Drug Discovery Today;13:894901.
  • 6
    Bohlin L., Göransson U., Alsmark C., Wedén C., Backlund A. (2010) Natural products in modern life science. Phytochem Rev;9:279301.
  • 7
    Harvey A.L., Clark R.L., Mackay S.P., Johnston B.F. (2010) Current strategies for drug discovery through natural products. Expert Opin Drug Discov;5:559568.
  • 8
    Rosén J., Gottfries J., Muresan S., Backlund A., Oprea T.I. (2009) Novel chemical space exploration via natural products. J Med Chem;52:19531962.
  • 9
    Kombarov R., Altieri A., Genis D., Kirpichenok M., Kochubey V., Rakitina N., Titarenko Z. (2010) Biocores: identification of a drug/natural product-based privileged structural motif for small-molecule lead discovery. Mol Divers;14:193200.
  • 10
    Butler M.S. (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep;25:475516.
  • 11
    Henkel T., Brunne R.M., Müller H., Reichel F. (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed;38:643647.
  • 12
    Stahura F.L., Godden J.W., Xue L., Bajorath J. (2000) Distinguishing between natural products and synthetic molecules by descriptor Shannon entropy analysis and binary QSAR calculations. J Chem Inf Comput Sci;40:12451252.
  • 13
    López-Vallejo F., Giulianotti M.A., Houghten R.A., Medina-Franco J.L. (2012) Expanding the medicinally relevant chemical space with compound libraries. Drug Discovery Today;17:718726.
  • 14
    Boldi A.M. (2004) Libraries from natural product-like scaffolds. Curr Opin Chem Biol;8:281286.
  • 15
    Yao N., Song A., Wang X., Dixon S., Lam K.S. (2007) Synthesis of flavonoid analogues as scaffolds for natural product-based combinatorial libraries. J Comb Chem;9:668676.
  • 16
    Scior T., Bernard P., Medina-Franco J.L., Maggiora G.M. (2007) Large compound databases for structure-activity relationships studies in drug discovery. Mini-Rev Med Chem;7:851860.
  • 17
    Scalbert A., Andres-Lacueva C., Arita M., Kroon P., Manach C., Urpi-Sarda M., Wishart D. (2011) Databases on food phytochemicals and their health-promoting effects. J Agric Food Chem;59:43314348.
  • 18
    Barbosa A.J.M., Rio A.D. (2012) Freely accessible databases of commercial compounds for high- throughput virtual screenings. Curr Top Med Chem;12:866877.
  • 19
    Clemons P.A., Wilson J.A., Dancik V., Muller S., Carrinski H.A., Wagner B.K., Koehler A.N., Schreiber S.L. (2011) Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc Natl Acad Sci U S A;108:68176822.
  • 20
    Chen H., Engkvist O., Blomberg N., Li J. (2012) A comparative analysis of the molecular topologies for drugs, clinical candidates, natural products, human metabolites and general bioactive compounds. Med Chem Comm;3:312321.
  • 21
    Ertl P., Roggo S., Schuffenhauer A. (2007) Natural product-likeness score and its application for prioritization of compound libraries. J Chem Inf Model;48:6874.
  • 22
    Koch M.A., Schuffenhauer A., Scheck M., Wetzel S., Casaulta M., Odermatt A., Ertl P., Waldmann H. (2005) Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci U S A;102:1727217277.
  • 23
    Medina-Franco J.L., Martínez-Mayorga K., Bender A., Scior T. (2009) Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb Sci;28:15511560.
  • 24
    Houghten R.A., Pinilla C., Giulianotti M.A., Appel J.R., Dooley C.T., Nefzi A., Ostresh J.M., Yu Y.P., Maggiora G.M., Medina-Franco J.L., Brunner D., Schneider J. (2008) Strategies for the use of mixture-based synthetic combinatorial libraries: scaffold ranking, direct testing, in vivo, and enhanced deconvolution by computational methods. J Comb Chem;10:319.
  • 25
    Martínez-Mayorga K., Medina-Franco J.L., Giulianotti M.A., Pinilla C., Dooley C.T., Appel J.R., Houghten R.A. (2008) Conformation-opioid activity relationships of bicyclic guanidines from 3D similarity analysis. Biorg Med Chem;16:59325938.
  • 26
    Yongye A.B., Appel J.R., Giulianotti M.A., Dooley C.T., Medina-Franco J.L., Nefzi A., Houghten R.A., Martínez-Mayorga K. (2009) Identification, structure–activity relationships and molecular modeling of potent triamine and piperazine opioid ligands. Bioorg Med Chem;17:55835597.
  • 27
    Chen C.Y.-C. (2011) TCM database@Taiwan: the world’s largest traditional chinese medicine database for drug screening in silico. PLoS One;6:e15939.
  • 28
    Jaccard P. (1901) Etude comparative de la distribution florale dans une portion des alpes et des jura. Bull Soc Vaudoise Sci Nat;37:547579.
  • 29
    Bender A., Glen R.C. (2004) Molecular similarity: a key technique in molecular informatics. Org Biomol Chem;2:32043218.
  • 30
    Agrafiotis D.K. (2001) A constant time algorithm for estimating the diversity of large chemical libraries. J Chem Inf Comput Sci;41:159167.
  • 31
    Singh N., Guha R., Giulianotti M.A., Pinilla C., Houghten R.A., Medina-Franco J.L. (2009) Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model;49:10101024.
  • 32
    López-Vallejo F., Nefzi A., Bender A., Owen J.R., Nabney I.T., Houghten R.A., Medina-Franco J.L. (2011) Increased diversity of libraries from libraries: chemoinformatic analysis of bis-diazacyclic libraries. Chem Biol Drug Des;77:328342.
  • 33
    Schuffenhauer A., Varin T. (2011) Rule-based classification of chemical structures by scaffold. Mol Inf;30:646664.
  • 34
    Brown N., Jacoby E. (2006) On scaffolds and hopping in medicinal chemistry. Mini-Rev Med Chem;6:12171229.
  • 35
    Krier M., Bret G., Rognan D. (2006) Assessing the scaffold diversity of screening libraries. J Chem Inf Model;46:512524.
  • 36
    Xu Y., Johnson M. (2001) Algorithm for naming molecular equivalence classes represented by labeled pseudographs. J Chem Inf Comput Sci;41:181185.
  • 37
    Xu Y.J., Johnson M. (2002) Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J Chem Inf Comput Sci;42:912926.
  • 38
    Bemis G.W., Murcko M.A. (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem;39:28872893.
  • 39
    Medina-Franco J.L., Petit J., Maggiora G.M. (2006) Hierarchical strategy for identifying active chemotype classes in compound databases. Chem Biol Drug Des;67:395408.
  • 40
    López-Vallejo F., Peppard T.L., Medina-Franco J.L., Martínez-Mayorga K. (2011) Computational methods for the discovery of mood disorder therapies. Expert Opin Drug Discov;6:12271245.
  • 41
    Yoo J., Medina-Franco J.L. (2011) Chemoinformatic approaches for inhibitors of DNA methyltransferases: comprehensive characterization of screening libraries. Comp Mol Biosci;1:716.
  • 42
    Lipkus A.H., Yuan Q., Lucas K.A., Funk S.A., Bartelt W.F., Schenck R.J., Trippe A.J. (2008) Structural diversity of organic chemistry. A scaffold analysis of the cas registry. J Org Chem;73:44434451.
  • 43
    Grabowski K., Schneider G. (2007) Properties and architecture of drugs and natural products revisited. Curr Chem Biol;1:115127.
  • 44
    Shannon C.E., Weaver W. (1963) The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press.
  • 45
    Godden J.W., Bajorath J. (2007) Analysis of chemical information content using Shannon entropy. In: Lipkowitz K.B., Cundari T.R., editors. Analysis of Chemical Information Content Using Shannon Entropy. Hoboken: John Wiley & Sons, Inc; p. 263289.
  • 46
    Irwin J.J., Shoichet B.K. (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model;45:177182.
  • 47
    Medina-Franco J., López-Vallejo F., Kuck D., Lyko F. (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers;15:293304.
  • 48
    Scior T., Bender A., Tresadern G., Medina-Franco J.L., Martínez-Mayorga K., Langer T., Cuanalo-Contreras K., Agrafiotis D.K. (2012) Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model;52:867881.
  • 49
    Tsai T.-Y., Chang K.-W., Chen C. (2011) iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des;25:525531.
  • 50
    Owen J.R., Nabney I.T., Medina-Franco J.L., López-Vallejo F. (2011) Visualization of molecular fingerprints. J Chem Inf Model;51:15521563.
  • 51
    Schuffenhauer A., Ertl P., Roggo S., Wetzel S., Koch M.A., Waldmann H. (2007) The scaffold tree – visualization of the scaffold universe by hierarchical scaffold classification. J Chem Inf Model;47:4758.
  • 52
    Langdon S.R., Brown N., Blagg J. (2011) Scaffold diversity of exemplified medicinal chemistry space. J Chem Inf Model;51:21742185.
  • 53
    Nicholls A. (2008) What do we know and when do we know it? J Comput Aided Mol Des;22:239255.