SEARCH

SEARCH BY CITATION

References

  • 1
    Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T. et al. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun;236:313322.
  • 2
    Rushmore T.H., Pickett C.B. (1990) Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem;265:1464814653.
  • 3
    Rushmore T.H., Morton M.R., Pickett C.B. (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem;266:1163211639.
  • 4
    Lee J.M., Calkins M.J., Chan K., Kan Y.W., Johnson J.A. (2003) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem;278:1202912038.
  • 5
    Shih A.Y., Johnson D.A., Wong G., Kraft A.D., Jiang L., Erb H. et al. (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci;23:33943406.
  • 6
    Chen P.C., Vargas M.R., Pani A.K., Smeyne R.J., Johnson D.A., Kan Y.W. et al. (2009) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci USA;106:29332938.
  • 7
    Jazwa A., Rojo A.I., Innamorato N.G., Hesse M., Fernandez-Ruiz J., Cuadrado A. (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal;14:23472360.
  • 8
    Vargas M.R., Johnson D.A., Sirkis D.W., Messing A., Johnson J.A. (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci;28:1357413581.
  • 9
    Alam Z.I., Daniel S.E., Lees A.J., Marsden D.C., Jenner P., Halliwell B. (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem;69:13261329.
  • 10
    Alam Z.I., Jenner A., Daniel S.E., Lees A.J., Cairns N., Marsden C.D. et al. (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem;69:11961203.
  • 11
    Dexter D.T., Sian J., Rose S., Hindmarsh J.G., Mann V.M., Cooper J.M. et al. (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol;35:3844.
  • 12
    Kang M.I., Kobayashi A., Wakabayashi N., Kim S.G., Yamamoto M. (2004) Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci USA;101:20462051.
  • 13
    Zhang D.D., Lo S.C., Cross J.V., Templeton D.J., Hannink M. (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol;24:1094110953.
  • 14
    Levonen A.L., Landar A., Ramachandran A., Ceaser E.K., Dickinson D.A., Zanoni G. et al. (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J;378:373382.
  • 15
    Wakabayashi N., Dinkova-Kostova A.T., Holtzclaw W.D., Kang M.I., Kobayashi A., Yamamoto M. et al. (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA;101:20402045.
  • 16
    Zhang D.D., Hannink M. (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol;23:81378151.
  • 17
    Burton N.C., Kensler T.W., Guilarte T.R. (2006) In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology;27:10941100.
  • 18
    Zhang D.D., Lo S.C., Sun Z., Habib G.M., Lieberman M.W., Hannink M. (2005) Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem;280:3009130099.
  • 19
    Hong F., Sekhar K.R., Freeman M.L., Liebler D.C. (2005) Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem;280:3176831775.
  • 20
    Sullivan D.J. Jr, Kaludov N., Martinov M.N. (2011) Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation. Malar J;10:274.
  • 21
    Yuan Y.F., Shaw M.J. (1995) Induction of fuzzy decision trees. Fuzzy Sets Syst;69:125139.
  • 22
    Janikow C.Z. (1998) Fuzzy decision trees: issues and methods. IEEE Trans Syst Man Cybern B Cybern;28:114.
  • 23
    Johnson D.A., Andrews G.K., Xu W., Johnson J.A. (2002) Activation of the antioxidant response element in primary cortical neuronal cultures derived from transgenic reporter mice. J Neurochem;81:12331241.
  • 24
    Chan K., Lu R., Chang J.C., Kan Y.W. (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci USA;93:1394313948.
  • 25
    Fasano C., Thibault D., Trudeau L.E. (2008) Culture of postnatal mesencephalic dopamine neurons on an astrocyte monolayer. Curr Protoc Neurosci;3:3.21.1–3.21.19.
  • 26
    Murphy T.H., So A.P., Vincent S.R. (1998) Histochemical detection of quinone reductase activity in situ using LY 83583 reduction and oxidation. J Neurochem;70:21562164.
  • 27
    Kraft A.D., Johnson D.A., Johnson J.A. (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci;24:11011112.
  • 28
    Hur W., Gray N.S. (2011) Small molecule modulators of antioxidant response pathway. Curr Opin Chem Biol;15:162173.
  • 29
    Chen H.H., Chen Y.T., Huang Y.W., Tsai H.J., Kuo C.C. (2012) 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic Biol Med;52:10541066.
  • 30
    Lee J.M., Hanson J.M., Chu W.A., Johnson J.A. (2001) Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. J Biol Chem;276:2001120016.
  • 31
    Wu J.H., Miao W., Hu L.G., Batist G. (2010) Identification and characterization of novel Nrf2 inducers designed to target the intervening region of Keap1. Chem Biol Drug Des;75:475480.
  • 32
    Hur W., Sun Z., Jiang T., Mason D.E., Peters E.C., Zhang D.D. et al. (2010) A small-molecule inducer of the antioxidant response element. Chem Biol;17:537547.
  • 33
    Zhu M., Baek H., Liu R., Song A., Lam K., Lau D. (2009) LAS0811: from combinatorial chemistry to activation of antioxidant response element. J Biomed Biotechnol;2009:420194.
  • 34
    Pandey M.K., Kumar S., Thimmulappa R.K., Parmar V.S., Biswal S., Watterson A.C. (2011) Design, synthesis and evaluation of novel PEGylated curcumin analogs as potent Nrf2 activators in human bronchial epithelial cells. Eur J Pharm Sci;43:1624.
  • 35
    Wondrak G.T., Cabello C.M., Villeneuve N.F., Zhang S., Ley S., Li Y. et al. (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med;45:385395.