SEARCH

SEARCH BY CITATION

References

  • 1
    Seidemann P., Fjellner B., Johannesson A. (1987) Psoriatic arthritis treated with oral colchicine. J Rheumatol;14:777779.
  • 2
    Callen J.P. (1985) Colchicine is effective in controlling chronic cutaneous vasculitis in lupus erythematosus. J Am Acad Dermatol;13:193200.
  • 3
    Rosenman S.J., Ganji A.A., Gallatin W.M. (1991) Contact dependent redistribution of cell surface adhesion and activation molecules reorganization. FASEB J;5:1603.
  • 4
    Mekory Y.A., Baram D., Goldberg A., Klajman A. (1989) Inhibition of delayed hypersensitivity in mice by colchicines: mechanism of inhibition of contact sensibility in vivo. Cell Immunol;120:330340.
  • 5
    Borisy G.O., Taylor E.W. (1967) The mechanism of action of colchicine: colchicine binding to sea urchin eggs and the mitotic apparatus. J Cell Biol;34:533548.
  • 6
    Matsumoto G., Sakai H. (1979) Microtubules inside the plasma membrane of squid giant axons and their possible physiological function. J Membr Biol;50:114.
  • 7
    Haga T., Kurokawa M. (1975) Microtubule formation from two components separated by gel filtration of a tubulin preparation. Biochim Biophys Acta;392:335.
  • 8
    Agutter P.S., Suckling K.E. (1982) Effect of colchicine on mammalian liver nuclear envelope and on nucleo-cytoplasmic RNA transport. Biochim Biophys Acta;698:223229.
  • 9
    Holmes F.A., Kudelka A.P., Kavanagh J.J., Huber M.H., Ajani J.A., Valero V. (1995) Current status of clinical trials with paclitaxel and docutaxel. In: Georg G.I., Chen T.C., Ojima I., Vyas D.M., editors. Taxane Anticancer Agents: Basic Science and Current Status, ACS Symposium Series No. 583. Washington, DC: American Chemical Society; p. 3157.
  • 10
    Schiff P.B., Fant J., Horwitz S.B. (1979) Promotion of microtubule assembly in vitro by taxol. Nature;277:665666.
  • 11
    Fisherman J., McCabe M., Hillig M. (1992) Phase I study of taxol and doxorubucin (Dox) with G-CSF in previously untreated metastatic breast cancer. Proc Am Soc Clin Oncol;1175A.
  • 12
    Sharma A., Straubinger R.M. (1994) Novel taxol formulations: preparation and characterization of taxol-containing liposomes. Pharm Res;11:889896.
  • 13
    Sonee M., Barron E., Yarber F.A., Hamm-Alvarez S.F. (1998) Taxol inhibits endosomal-lysosomal membrane trafficking at two distinct steps in CV-1 cells. Am J Physiol Cell Physiol;44:16301639.
  • 14
    Balasubramanian S.V., Straubinger R.M. (1994) Taxol-lipid interactions: taxol-dependent effects on the physical properties of model membranes. Biochemistry;33:89418947.
  • 15
    Shiba M., Watanabe E., Sasakawa S., Ikeda Y. (1988) Effects of taxol and colchicines on platelet membrane properties. Thromb Res;52:313323.
  • 16
    Mons S., Veretout F., Carlier M., Erk I., Lepault J., Trudel E., Salesse C., Ducray P., Mioskowski C., Lebeau L. (2000) The interaction between lipid derivatives of colchicines and tubulin: consequences of the interaction of the alkaloid with lipid membranes. Biochim Biophys Acta;1468:381395.
  • 17
    Jelokhani-Niaraki M., Hodges R.S., Meissner J.E., Hassenstein U.E., Wheaton L. (2008) Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes. Biophys J;95:33063321.
  • 18
    Bond P.J., Khalid S. (2010) Antimicrobial and cell-penetrating peptides: structure, assembly and mechanisms of membrane lysis via atomistic and coarse-grained molecular dynamics simulations. Protein Pept Lett;17:13131327.
  • 19
    Boheim G. (1974) Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol;19:277303.
  • 20
    He K., Ludtke S.J., Huang H.W., Worcester D.L. (1995) Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry;34:1561415618.
  • 21
    Andersen O.S. (1983) Ion movement through gramicidin a channels studies on the diffusion-controlled association step. Biophys J;41:147165.
  • 22
    Ashrafuzzaman M., Andersen O.S. (2007) Lipid bilayer elasticity and intrinsic curvature as regulators of channel function: a single molecule study. Biophys J;421a.
  • 23
    Ashrafuzzaman M., McElhaney R.N., Andersen O.S. (2008) One antimicrobial peptide (gramicidin S) can affect the function of another (gramicidin A or alamethicin) via effects on the phospholipid bilayer. Biophys J;94:21.
  • 24
    Ashrafuzzaman M., Andersen O.S., McElhaney R.N. (2008) The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim Biophys Acta;1778:28142822.
  • 25
    Matsuzaki K., Murase O., Tokuda H., Fujii N., Miyajima K. (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry;35:1136111368.
  • 26
    Ludtke S.J., He K., Heller W.T., Harroun T.A., Yang L., Huang H.W. (1996) Membrane pores induced by magainin. Biochemistry;35:1372313728.
  • 27
    Yang L., Harroun T., Weiss T.M., Ding L., Huang H.W. (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J;81:14751485.
  • 28
    Ashrafuzzaman M., Tuszynski J. (2012) Regulation of channel function due to coupling with a lipid bilayer. J Comput Theor Nanosci;9:564570.
  • 29
    Ashrafuzzaman M., Tuszynski J. (2012) Ion pore formation in lipid membranes due to complex interactions between lipids and channel formping peptides or biomolecules. In: Goddard W., Brenner D., Lyshevki S., Iafrate G., editors. HB of Nanosci., Eng. & Tech. New York: Taylor and Francis (CRC press); 893934.
  • 30
    Ashrafuzzaman M. (2011) Antimicrobial peptides modulate bilayer barrier properties using a variety of mechanisms of actions. In: Méndez-Vilas A., editor. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances (Microbiology Book Series, No. 3), Formatex Res. Cen., Spain. Badajoz; Vol 2, p. 938950.
  • 31
    Ashrafuzzaman M., Tuszynski J. (2012) Ion pore formation in lipid bilayers and related energetic considerations, Curr. Med Chem;19:16191634.
  • 32
    Wang J., Wang W., Kollman P.A., Case D.A. (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model;25:247260.
  • 33
    Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. (2004) Development and testing of a general AMBER force field. J Comput Chem;25:11571174.
  • 34
    Huzil J.T., Mane J., Tuszynski J.A. (2010) Computer assisted design of second generation colchicine derivatives. Interdiscip Sci;2:169174.
  • 35
    Freedman H., Huzil J.T., Luchko T., Luduena R.F., Tuszynski J.A. (2009) Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J Chem Inf Model;49:424436.
  • 36
    Ashrafuzzaman M., Duszyk M., Tuszynski J. (2011) Chemotherapy drug molecules thiocochicoside and taxol permeabilize lipid bilayer membranes by forming ion channels. J Phys Conf Ser;329:012029, 1–16.
  • 37
    Erdal H., Berndtsson M., Castro J., Brunk U., Shoshan M.C., Linder S. (2004) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci USA;102:192197.
  • 38
    Bechinger B. (1997) Structure and functions of channel-forming peptides: magainins, sercopins, melittin and alamethicin. J Membr Biol;156:197211.
  • 39
    Bechinger B. (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta;1462:157183.
  • 40
    Melikov K.C., Frolov V.A., Shcherbakov A., Samsonov A.V., Chizmadzhev Y.A., Chernomordik L.V. (2001) Voltage-induced nanoconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys J;80:18291836.
  • 41
    Ashrafuzzaman M., Lampson M.A., Greathouse D.V., Koeppe R.E. II, Andersen O.S. (2006) Manipulating lipid bilayer material properties using biologically active amphipathic molecules. J Phys Condens Matter;18:S1235S1255.
  • 42
    Siskind L.J., Colombini M. (2000) The lipids C2- and C16-ceramide form large stable channels implications for apoptosis. J Biol Chem;275:3864038644.
  • 43
    Boheim G., Kolb H.A. (1978) Analysis of the multipore system of alamethicin in a lipid membrane. I. Voltage-jump current-relaxation measurements. J Membr Biol;38:99150.
  • 44
    Latorre M., Alvarez O. (1981) Voltage-dependent channels in plannar lipid bilayer membranes. Physiol Rev;61:77150.
  • 45
    Perozo E., Cortes D.M., Sompornpisut P., Kloda A., Martinac B. (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature;418:942948.
  • 46
    Gagliardi L.J. (2005) Electrostatic considerations in mitogenesis. Proceedings ESA Annual Meeting; 227241.
  • 47
    Woolf T.B., Roux B. (1994) Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci USA;91:1163111635.