• 1
    Saraste M. (1999) Oxidative phosphorylation at the fin de siècle. Science;283:14881493.
  • 2
    Carafoli E. (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA;99:11151122.
  • 3
    Hudmon A., Schulman H. (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem;71:473510.
  • 4
    Cammarota M., Bevilaqua L.R., Viola H., Kerr D.S., Reichmann B., Teixeira V., Bulla M., Izquierdo I., Medina J.H. (2002) Participation of CaMKII in neuronal plasticity and memory formation. Cell Mol Neurobiol;22:259267.
  • 5
    Ramsey A.J., Daubner S.C., Ehrlich J.I., Fitzpatrick P.F. (1995) Identification of iron ligands in tyrosine hydroxylase by mutagenesis of conserved histidinyl residues. Protein Sci;4:20822086.
  • 6
    Rush R.A., Geffen L.B. (1980) Dopamine beta-hydroxylase in health and disease. Crit Rev Clin Lab Sci;12:241277.
  • 7
    Tainer J.A., Getzoff E.D., Richardson J.S., Richardson D.C. (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature;306:284287.
  • 8
    Borgstahl G.E., Parge H.E., Hickey M.J., Beyer W.F. Jr, Hallewell R.A., Tainer J.A. (1992) The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell;71:107118.
  • 9
    Riordan J.F. (1977) The role of metals in enzyme activity. Ann Clin Lab Sci;7:119129.
  • 10
    Stöcker W., Grams F., Baumann U., Reinemer P., Gomis-Rüth F.X., McKay D.B., Bode W. (1995) The metzincins – topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci;4:823840.
  • 11
    Liang X., Campopiano D.J., Sadler P.J. (2007) Metals in membranes. Chem Soc Rev;36:968992.
  • 12
    Petrucci R.H., Harwood W.S., Herring F.G., Madura J.D. (2007) General Chemistry: Principles & Modern Applications, 9th edn. Upper Saddle River, New Jersey, USA: Prentice Hall.
  • 13
    McCall K.A., Huang C.-c., Fierke C.A. (2000) Function and mechanism of zinc metalloenzymes. J Nutr;130:1437S1446S.
  • 14
    Eames J., Watkinson M. (2005) Metalloenzymes and electrophilic catalysis. In: Encyclopaedia of Life Sciences. Chichester, UK: John Wiley & Sons Ltd; doi/10.1038/npg.els.0000724.
  • 15
    Lindskog S. (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther;74:120.
  • 16
    Gitlin J.D. (2003) Wilson disease. Gastroenterology;125:18681877.
  • 17
    Mercer J.F. (2001) The molecular basis of copper-transport diseases. Trends Mol Med;7:6469.
  • 18
    Llanos R.M., Mercer J.F. (2002) The molecular basis of copper homeostasis and copper-related disorders. DNA Cell Biol;21:259270.
  • 19
    Scheinberg I.H., Sternlieb I. (1996) Wilson disease and idiopathic copper toxicosis. Am J Clin Nutr;63:842S845S.
  • 20
    Watt N.T., Whitehouse I.J., Hooper N.M. (2011) The role of zinc in Alzheimer’s disease. Int J Alzheimers Dis;2011:971021.
  • 21
    Andrews N.C. (1999) Disorders of iron metabolism. N Engl J Med;341:19861995.
  • 22
    Tümer Z., Møller L.B. (2010) Menkes disease. Eur J Hum Genet;18:511518.
  • 23
    La Fontaine S., Mercer J.F. (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys;463:149167.
  • 24
    Lutsenko S., Barnes N.L., Bartee M.Y., Dmitriev O.Y. (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev;87:10111046.
  • 25
    Brewer G.J., Yuzbasiyan-Gurkan V. (1992) Wilson disease. Medicine;71:139164.
  • 26
    Lutsenko S., Efremov R.G., Tsivkovskii R., Walker J.M. (2002) Human copper-transporting ATPase ATP7B (the Wilson’s disease protein): biochemical properties and regulation. J Bioenerg Biomembr;34:351362.
  • 27
    Voskoboinik I., Camakaris J. (2002) Menkes copper-translocating P-type ATPase (ATP7A): biochemical and cell biology properties, and role in Menkes disease. J Bioenerg Biomembr;34:363371.
  • 28
    Paik S.R., Shin H.J., Lee J.H., Chang C.S., Kim J. (1999) Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem J;340:821828.
  • 29
    Kong G.K.W., Miles L.A., Crespi G.A.N., Morton C.J., Ng H.L., Barnham K.J., McKinstry W.J., Cappai R., Parker M.W. (2008) Copper binding to the Alzheimer’s disease amyloid precursor protein. Eur Biophys J;37:269279.
  • 30
    Desoize B. (2004) Metals and metal compounds in cancer treatment. Anticancer Res;24:15291544.
  • 31
    Shaw C.F. III (1999) Gold-based medicinal agents. Chem Rev;99:25892600.
  • 32
    Johnson S.W., Stevenson J.P., O’Dwyer P.J. (2001) Cisplatin and its analogues. In: De Vita V.T. Jr, Hellman S., Rosenberg S.A., editors. Cancer: Principles and Practice of Oncology, 6th edn. Philadelphia, PA, USA: Lippincott Williams & Wilkins; p. 376387.
  • 33
    Wiltshaw E. (1979) Cisplatin in the treatment of cancer. Platin Met Rev;23:9098.
  • 34
    Graf N., Lippard S.J. (2012) Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv Drug Deliv Rev;64:9931004.
  • 35
    van Rijt S.H., Sadler P.J. (2009) Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov Today;14:10891097.
  • 36
    Umezawa H., Maedaka K., Takeuchi T., Okami Y. (1966) New antibiotics, bleomycin A and B. J Antibiot (Tokyo);19:200209.
  • 37
    Fermé C., Eghbali H., Meerwaldt J.H., Rieux C., Bosq J., Berger F., Girinsky T. et al. (2007) Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med;357:19161927.
  • 38
    Skarin A.T., Rosenthal D.S., Moloney W.C., Frei E. (1977) Combination chemotherapy of advanced non-Hodgkin lymphoma with bleomycin, adriamycin, cyclophosphamide, vincristine, and prednisone (BACOP). Blood;49:759770.
  • 39
    Peckham M.J., Barrett A., Liew K.H., Horwich A., Robinson B., Dobbs H.J., McElwain T.J., Hendry W.F. (1983) The treatment of metastatic germ-cell testicular tumours with bleomycin, etoposide and cisplatin (BEP). Br J Cancer;47:613619.
  • 40
    Palwai V.R., Eriksson L.A. (2011) Molecular dynamics simulations exploring the interaction between DNA and Matalated bleomycin. J Biophys Chem;2:171183.
  • 41
    Felnagle E.A., Jackson E.E., Chan Y.A., Podevels A.M., Berti A.D., McMahon M.D., Thomas M.G. (2008) Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm;5:191211.
  • 42
    Goodwin K.D., Lewis M.A., Long E.C., Georgiadis M.M. (2008) Crystal structure of DNA-bound Co(III)-bleomycin B-2: insights on intercalation and minor groove binding. Proc Natl Acad Sci USA;105:50525056.
  • 43
    Kuroda R., Neidle S., Riordan J.M., Sakai T.T. (1982) X-ray crystallographic analysis of 3-(2′-phenyl-2,4′-bithiazole-4-carboxamido) propyldimethylsulphonium iodide, an analogue of the DNA-binding portion of bleomycin A2. Nucleic Acids Res;10:47534763.
  • 44
    James M.N., Watson K.J. (1966) Chemistry of micrococcin P. Part IX. The crystal and molecular structure of micrococcinic acid bis-4-bromoanilide. J Chem Soc;16:13611371.
  • 45
    Maruyama M., Kumagai T., Matoba Y., Hayashida M., Fujii T., Hata Y., Sugiyama M. (2001) Crystal structures of the transposon Tn5-carried bleomycin resistance determinant uncomplexed and complexed with bleomycin. J Biol Chem;276:99929999.
  • 46
    Sakai T.T., Riordan J.M., Booth T.E., Glickson J.D. (1981) Synthesis and DNA binding of [3-[2′-(2-acetamidoethyl)-2,4′-bithiazole-4-carboxamido]propyl] dimethylsulfonium chloride, a fragment of bleomycin A2. J Med Chem;24:279285.
  • 47
    Lin S.Y., Grollman A.P. (1981) Interaction of bleomycin with deoxyribodinucleotides: an NMR study. Biochemistry;20:75897598.
  • 48
    Boger D.L., Colletti S.L., Teramoto S., Ramsey T.M., Zhou J. (1995) Synthesis of key analogs of bleomycin A2 that permit a systematic evaluation of the linker region: identification of an exceptionally prominent role for the l-threonine substituent. Bioorg Med Chem;3:12811295.
  • 49
    Hecht S.M. (1986) The chemistry of activated bleomycin. Acc Chem Res;19:383391.
  • 50
    Stubbe J., Kozarich J.W. (1987) Mechanisms of bleomycin-induced DNA degradation. Chem Rev;87:11071136.
  • 51
    Chen J., Stubbe J. (2005) Bleomycins: towards better therapeutics. Nat Rev Cancer;5:102112.
  • 52
    Kuwahara J., Sugiura Y. (1988) Sequence-specific recognition and cleavage of DNA by metallobleomycin: minor groove binding and possible interaction mode. Proc Natl Acad Sci USA;85:24592463.
  • 53
    Decker A., Chow M.S., Kemsley J.N., Lehnert N., Solomon E.I. (2006) Direct hydrogen-atom abstraction by activated bleomycin: an experimental and computational study. J Am Chem Soc;128:47194733.
  • 54
    Neidig M.L., Decker A., Choroba O.W., Huang F., Kavana M., Moran G.R., Spencer J.B., Solomon E.I. (2006) Spectroscopic and electronic structure studies of aromatic electrophilic attack and hydrogen-atom abstraction by non-heme iron enzymes. Proc Natl Acad Sci USA;103:1296612973.
  • 55
    Harsch A., Marzilli L.A., Bunt R.C., Stubbe J., Vouros P. (2000) Accurate and rapid modeling of iron–bleomycin-induced DNA damage using tethered duplex oligonucleotides and electrospray ionization ion trap mass spectrometric analysis. Nucleic Acids Res;28:19781985.
  • 56
    Wu J.C., Kozarich J.W., Stubbe J. (1985) Mechanism of bleomycin: evidence for a rate-determining 4′-hydrogen abstraction from poly(dA-dU) associated with the formation of both free base and base propenal. Biochemistry;24:75627568.
  • 57
    Kozarich J.N., Worth L. Jr, Frank B.L., Christner D.P., Vanderwall D.E., Stubbe J. (1989) Sequence-specific isotope effects on the cleavage of DNA by bleomycin. Science;245:13961399.
  • 58
    Worth L. Jr, Frank B.L., Christner D.F., Absalon M.J., Stubbe J., Kozarich J.W. (1993) Isotope effects on the cleavage of DNA by bleomycin: mechanism and modulation. Biochemistry;32:26012609.
  • 59
    Pogozelski W.K., Tullius T.D. (1998) Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev;98:10891107.
  • 60
    Absalon M.J., Wu W., Kozarich J.W., Stubbe J. (1995) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 2. Mechanism and dynamics. Biochemistry;34:20762086.
  • 61
    Vane J.R. (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol;231:232235.
  • 62
    Rouzer C.A., Marnett L.J. (2009) Cyclooxygenases: structural and functional insights. J Lipid Res;50:S29S34.
  • 63
    Ricciotti E., FitzGerald G.A. (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol;31:9861000.
  • 64
    Rao P.N.P., Knaus E. (2008) Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci;11:81s110s.
  • 65
    Warner T.D., Mitchell J.A. (2004) COXs: new forms, new inhibitors, and lessons from the clinic. FASEB J;18:790804.
  • 66
    Uauy R., Olivares M., Gonzalez M. (1998) Essentiality of copper in humans. Am J Clin Nutr;67:952S959S.
  • 67
    Peña M.M., Lee J., Thiele D.J. (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr;129:12511260.
  • 68
    Weder J.E., Dillon C.T., Hambley T.W., Kennedy B.J., Lay P.A., Biffin J.R., Regtop H.L., Davies N.M. (2002) Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev;232:95126.
  • 69
    Sorenson J.R.J. (1989) Copper complexes in the treatment of experimental inflammatory conditions: inflammation, ulcers and pain. In: Milanino R., Rainsford K.D., Velo G.P., editors. Copper and Zinc in Inflammation. Dordrecht, Netherlands: Kluwer Academic Publishers; p. 6984.
  • 70
    Yun Y., Chen P., Zheng C.L., Yang Y., Duan W.G., Wang L., He B., Ma J.Q., Wang D.H., Shen Z.Q. (2007) Copper-aspirin complex inhibits cyclooxygenase-2 more selectively than aspirin. Yakugaku Zasshi;127:18691875.
  • 71
    Ahmed F., Adsule S., Ali A.S., Banerjee S., Ali S., Kulkarni S., Padhye S., Sarkar F.H. (2007) A novel copper complex of 3-benzoyl-α methyl benzene acetic acid with antitumor activity mediated via cyclooxygenase pathway. Int J Cancer;120:734742.
  • 72
    Bhirud R.G., Srivastava T.S. (1990) Superoxide dismutase activity of Cu(II)2(aspirinate)4 and its adducts with nitrogen and oxygen donors. Inorg Chim Acta;173:121125.
  • 73
    Howell J.M.C., Gawthorne J.M. (1987) Copper in Animals and Man, Volume 1, 1st edn. Boca Raton, FL, USA: CRC Press Inc.
  • 74
    Howell J.M.C., Gawthorne J.M. (1987) Copper in Animals and Man, Volume 2, 1st edn. Boca Raton, FL, USA: CRC Press Inc.
  • 75
    Bharti S.K., Singh S.K. (2009) Metal based drugs: current use and future potential. Der Pharmacia Lett;1:3951.
  • 76
    Sorenson J.R.J. (1976) Copper chelates as possible active forms of the antiarthritic agents. J Med Chem;19:135148.
  • 77
    Walker W.R., Beveridge S.J., Whitehouse M.W. (1980) Anti-inflammatory activity of a dermally applied copper salicylate preparation (alcusal). Agents Actions;10:3847.
  • 78
    De Clercq E., Yamamoto N., Pauwels R., Balzarini J., Witvrouw M., De Vreese K., Debyser Z. et al. (1994) Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother;38:668674.
  • 79
    Scozzafava A., Mastrolorenzo A., Supuran C.T. (2002) Non-peptidic chemokine receptors antagonists as emerging anti-HIV agents. J Enzyme Inhib Med Chem;117:6976.
  • 80
    Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P.D., Wu L., Mackay C.R., LaRosa G., Newman W., Gerard N., Gerard C., Sodroski J. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell;85:11351148.
  • 81
    Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R.E., Hill C.M., Davis C.B., Peiper S.C., Schall T.J., Littman D.R., Landau N.R. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature;381:661666.
  • 82
    Dragic T., Litwin V., Allaway G.P., Martin S.R., Huang Y., Nagashima K.A., Cayanan C., Maddon P.J., Koup R.A., Moore J.P., Paxton W.A. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature;381:667673.
  • 83
    Keating G.M. (2011) Plerixafor: a review of its use in stem-cell mobilization in patients with lymphoma or multiple myeloma. Drugs;71:16231647.
  • 84
    Donzella G.A., Schols D., Lin S.W., Esté J.A., Nagashima K.A., Maddon P.J., Allaway G.P., Sakmar T.P., Henson G., De Clercq E., Moore J.P. (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med;4:7277.
  • 85
    Paisey S.J., Sadler P.J. (2004) Anti-viral cyclam macrocycles: rapid zinc uptake at physiological pH. Chem Commun (Camb);30:6307.
  • 86
    Gerlach L.O., Jakobsen J.S., Jensen K.P., Rosenkilde M.R., Skerlj R.T., Ryde U., Bridger G.J., Schwartz T.W. (2003) Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry;42:710717.
  • 87
    Esté J.A., Cabrera C., De Clercq E., Struyf S., Van Damme J., Bridger G., Skerlj R.T., Abrams M.J., Henson G., Gutierrez A., Clotet B., Schols D. (1999) Activity of different bicyclam derivatives against human immunodeficiency virus depends on their interaction with the CXCR4 chemokine receptor. Mol Pharmacol;55:6773.
  • 88
    Liang X., Parkinson J.A., Parsons S., Weishäupl M., Gould R.O., Paisey S.J., Park H., Hunter T.M., Blindauer C.A., Parsons S., Sadler P.J. (2002) Structure and dynamics of metallomacrocycles: recognition of zinc xylyl-bicyclam by an HIV coreceptor. J Am Chem Soc;124:91059112.
  • 89
    Liang X., Weishäupl M., Parkinson J.A., Parsons S., McGregor P.A., Sadler P.J. (2003) Selective recognition of configurational substates of zinc cyclam by carboxylates: implications for the design and mechanism of action of anti-HIV agents. Chemistry;9:47094717.
  • 90
    Liang X., Sadler P.J. (2004) Cyclam complexes and their applications in medicine. Chem Soc Rev;33:246266.
  • 91
    Abraham M., Biyder K., Begin M., Wald H., Weiss I.D., Galun E., Nagler A., Peled A. (2007) Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells;25:21582166.
  • 92
    De Clercq E. (2003) Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections. Clin Microbiol Rev;16:569596.
  • 93
    Min A.D., Dienstag J.L. (2007) Oral antivirals for chronic hepatitis B. Clin Liver Dis;11:851868.
  • 94
    Lalezari J.P., Stagg R.J., Kuppermann B.D., Holland G.N., Kramer F., Ives D., Youle M., Robinson M.R., Drew W.L., Jaffe H.S. (1997) Intravenous cidofovir for peripheral cytomegalovirus retinitis in patients with AIDS. Ann Intern Med;126:257263.
  • 95
    Delaney W.E. IV, Ray A.S., Yang H., Qi X., Xiong S., Zhu Y., Miller M.D. (2006) Intracellular metabolism and in vitro activity of tenofovir against hepatitis B virus. Antimicrob Agents Chemother;50:24712477.
  • 96
    Naesens L., Snoeck R., Andrei G., Balzarini J., Neyts J., De Clercq E. (1997) HPMPC (cidofovir), PMEA (adefovir) and related acyclic nucleoside phosphonate analogues: a review of their pharmacology and clinical potential in the treatment of viral infections. Antiviral Chem Chemother;8:123.
  • 97
    Clercq E., Holy A. (2005) Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov;4:928940.
  • 98
    Lea A.P., Bryson H.M. (1996) Cidofovir. Drugs;52:225230.
  • 99
    Xiong X., Smith J.L., Chen M.S. (1997) Effect of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation. Antimicrob Agents Chemother;41:594599.
  • 100
    Steitz T.A. (1993) DNA- and RNA-dependent DNA polymerases. Curr Opin Struct Biol;3:3138.
  • 101
    Brautigam C.A., Steitz T.A. (1998) Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol;8:5463.
  • 102
    Berg B.J.V., Beard W.A., Wilson S.H. (2001) DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase β. J Biol Chem;276:34083416.
  • 103
    Berg J.M., Tymoczko J.L., Stryer L. (2002) Biochemistry, 5th edn. New York, USA: W. H. Freeman.
  • 104
    Steitz T.A. (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem;274:1739517398.
  • 105
    Yasuzawa T., Iida T., Muroi K., Ichimura M., Takahashi K., Sano H. (1988) Structures of duocarmycins, novel antitumor antibiotics produced by Streptomyces sp. Chem Pharm Bull;36:37283731.
  • 106
    Takahashi I., Takahashi K., Ichimura M., Morimoto M., Asano K., Kawamoto I., Tomita F., Nakano H. (1988) Duocarmycin A, a new antitumor antibiotic from Streptomyces. J Antibiot;41:19151917.
  • 107
    Chavda S., Babu B., Yanow S.K., Jardim A., Spithill T.W., Kiakos K., Kluza J., Lee M. (2010) A novel achiral seco-cyclopropylpyrido[e]indolone (CPyI) analog of CC-1065 and the duocarmycins: synthesis, DNA interactions, in vivo anticancer and anti-parasitic evaluation. Bioorg Med Chem;18:50165024.
  • 108
    Tercel M., Atwell G.J., Yang S., Ashoorzadeh A., Stevenson R.J., Botting K.J., Gu Y., Mehta S.Y., Denny W.A., Wilson W.R., Pruijn F.B. (2011) Selective treatment of hypoxic tumor cells in vivo: phosphate pre-prodrugs of nitro analogues of the duocarmycins. Angew Chem Int Ed;50:26062609.
  • 109
    Boger D.L., Johnson D.S. (1995) CC-1065 and the duocarmycins: unraveling the keys to a new class of naturally derived DNA alkylating agents. Proc Natl Acad Sci USA;92:36423649.
  • 110
    Boger D.L., Garbaccio R.M. (1999) Are the duocarmycin and CC-1065 DNA alkylation reactions acid-catalyzed? Solvolysis pH-rate profiles suggest they are not. J Org Chem;64:56665669.
  • 111
    Boger D.L., Garbaccio R.M. (1997) Catalysis of the CC-1065 and duocarmycin DNA alkylation reaction: DNA binding induced conformational change in the agent results in activation. Bioorg Med Chem;5:263276.
  • 112
    Boger D.L., Boyce C.W. (2000) Selective metal cation activation of a DNA alkylating agent: synthesis and evaluation of methyl 1,2,9,9a-tetrahydrocyclopropa[c]pyrido[3,2-e]indol-4-one-7-carboxylate. J Org Chem;65:40884100.
  • 113
    Boger D.L., Wolkenberg S.E., Boyce C.W. (2000) A new method in situ activation for a novel class of DNA alkylating agents: tunable metal cation complexation and activation. J Am Chem Soc;122:63256326.
  • 114
    Wolkenberg S.E., Boger D.L. (2002) Mechanisms of in situ activation of DNA targeting antitumor agents. Chem Rev;102:24772496.
  • 115
    Ellis D.A., Wolkenberg S.E., Boger D.L. (2001) Metal cation complexation and activation of reversed CPyI analogues of CC-1065 and duocarmycin SA: partitioning the effects of binding and catalysis. J Am Chem Soc;123:92999306.