• 1
    DiMasi J.A., Hansen R.W., Grabowski H.G. (2003) The price of innovation: new estimates of drug development costs. J Health Econ;22:151185.
  • 2
    DiMasi J.A. (2002) The value of improving the productivity of the drug development process: faster times and better decisions. Pharmacoeconomics;20:110.
  • 3
    Gonzalez F.J., Tukey R.H. (2006) Drug metabolism. In: Brunton L.L., Lazo J.S., Parker K.L., editors. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: The McGraw-Hill Companies, Inc.; p. 7191.
  • 4
    Testa B., Krämer S.D. (2007) The biochemistry of drug metabolism–an introduction: part 2. Redox reactions and their enzymes. Chem Biodivers;4:257405.
  • 5
    Gangwar S., Pauletti G.M., Wang B., Siahaan T.J., Stella V.J., Borchardt R.T. (1997) Prodrug strategies to enhance the intestinal absorption of peptides. DDT;2:148155.
  • 6
    Wang W., Jiang J., Ballard C.E., Wang B. (1999) Prodrug approaches to the improved delivery of peptide drugs. Curr Pharm Des;5:265287.
  • 7
    Chan O.H., Stewart B.H. (1996) Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov Today;1:461473.
  • 8
    Huttunen K.M., Raunio H., Rautio J. (2011) Prodrugs from serendipity to rational design. Pharmacol Rev;63:750771.
  • 9
    Stella V.J., Nti-Addae K.W. (2007) Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev;59:677694.
  • 10
    Dahan A., Khamis M., Agbaria R., Karaman R. (2012) Targeted prodrugs in oral delivery: the modern molecular biopharmaceutical approach. Expert Opinion on Drug Delivery;9:10011013.
  • 11
    Karaman R., Fattash B., Qtait A. (2013) The future of prodrugs – design by quantum mechanics methods. Expert Opinion on Drug Delivery;10:713729.
  • 12
    Ohlstein E.H., Ruffolo R.R. Jr, Elliott J.D. (2000) Drug discovery in the next millennium. Annu Rev Pharmacol Toxicol;40:177191.
  • 13
    Stella V.J. (2010) Prodrugs: some thoughts and current issues. J Pharm Sci;99(12):47554765.
  • 14
    Muller C.E. (2009) Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers;6:20712083.
  • 15
    Tunek A., Levin E., Svensson L.A. (1988) Hydrolysis of 3H-bambuterol, a carbamate prodrug of terbutaline, in blood from humans and laboratory animals in vitro. Biochem Pharmacol;37:38673876.
  • 16
    Browne T.R., Kugler A.R., Eldon M.A. (1996) Pharmacology and pharmacokinetics of fosphenytoin. Neurology;46:S3S7.
  • 17
    Wolff M.E. (editor) (1995) Medicinal Chemistry and Drug Discovery, 5th edn. New York: John Wiley & Sons.
  • 18
    Williams D.A., Foye W.O., Lemke T.L. editors. (2002) Foye's Principles of Medicinal Chemistry. Baltimore, MD: Wolters Kluwer Health; p. 2653.
  • 19
    Kenny B.A., Bushfield M., Parry-Smith D.J., Fogarty S., Trehene M. (1998) The application of high throughput screening to novel lead discovery, prog. Drug Res;41:246269.
  • 20
    Blundell T. (1996) Structure-based drug design. Nature;384:2326.
  • 21
    Williams M. (1993) Strategies for drug discovery. NIDA Res Monogr;132:122.
  • 22
    Beaumont K., Webster R., Gardner I., Dack K. (2003) Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab;4:461485.
  • 23
    Bellott R., Le Morvan V., Charasson V., Laurand A., Colotte M., Zanger U.M., Robert J. (2008) Functional study of the 830C >G polymorphism of the human carboxylesterase 2 gene. Cancer Chemother Pharmacol;61:481488.
  • 24
    Reddy K.R., Matelich M.C., Ugarkar B.G., Gómez-Galeno J.E., DaRe J., Ollis K., Erion M.D. (2008) Pradefovir: a prodrug that targets adefovir to the liver for the treatment of hepatitis B. J Med Chem;51:666676.
  • 25
    Kumpulainen H., Mähönen N., Laitinen M.L., Jaurakkajärvi M., Raunio H., Juvonen R.O., Vepsäläinen J., Järvinen T., Rautio J. (2006) Evaluation of hydroxyimine as cytochrome P450 selective prodrug structure. J Med Chem;49:12071211.
  • 26
    Saunders M.P., Patterson A.V., Chinje E.C., Harris A.L., Stratford I.J. (2000) NADPH: cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxicandoxic cytotoxicity in anaerobic resistant derivative of the A549 lung cancer cell line. Br J Cancer;82:651656.
  • 27
    Dobesh P.P. (2009) Pharmacokinetics and pharmacodynamics of prasugrel, a thienopyridine P2Y12 inhibitor. Pharmacotherapy;29:10891102.
  • 28
    Pereillo J.M., Maftouh M., Andrieu A., Uzabiaga M.F., Fedeli O., Savi P., Picard C. (2002) Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab Dispos;30:12881295.
  • 29
    Svensson L.A., Tunek A. (1988) The design and bioactivation of presystemically stable prodrugs. Drug Metab Rev;19:165194.
  • 30
    Stella V.J. (2007) A case for prodrugs. In: Stella V.J., Borchardt R.T., Hageman M.J., Oliyai R., Magg H., Tilley J.W., editors. Prodrugs: Challenges and Rewards. Part 1. New York, NY: AAPS Press/Springer; p. 333.
  • 31
    Albert A. (1958) Chemical aspects of selective toxicity. Nature;182:421422.
  • 32
    Harper N.J. (1959) Drug latentiation. J Med Pharm Chem;1:467500.
  • 33
    Harper N.J. (1962) Drug latentiation. Prog Drug Res;4:221294.
  • 34
    Sinkula A.A., Yalkowsky S.H. (1975) Rationale for design of biologically reversible drug derivatives: prodrugs. J Pharm Sci;64:181210.
  • 35
    Stella V.J. (1975) Pro-drugs: an overview and definition. In: Higuchi T., Stella V., editors. Prodrugs as Novel Drug Delivery Systems. ACS Symposium Series. Washington, DC: American Chemical Society; p. 1115.
  • 36
    Amidon G.L., Leesman G.D., Elliott R.L. (1980) Improving intestinal absorption of water-insoluble compounds: a membrane metabolism strategy. J Pharm Sci;69:13631368.
  • 37
    Fleisher D., Stewart B.H., Amidon G.L. (1985) Design of prodrugs for improved gastrointestinal absorption by intestinal enzyme targeting. Methods Enzymol;112:360381.
  • 38
    Bai J.P., Amidon G.L. (1992) Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery. Pharm Res;9:969978.
  • 39
    Stella V.J., Himmelstein K.J. (1980) Prodrugs and site-specific drug delivery. J Med Chem;23:12751282.
  • 40
    Stella V.J., Himmelstein K.J. (1982) Critique of prodrugs and site specific delivery. In: Bundgaard H., editor. Optimization of Drug Delivery. Alfred Benzon Symposium Copenhagen: Munksgaard; p. 134155.
  • 41
    Friend D.R., Chang G.W. (1984) A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem;27:261266.
  • 42
    Philpott G.W., Shearer W.T., Bower R.J., Parker C.W. (1973) Selective cytotoxicity of hapten-substituted cells with an antibody-enzyme conjugate. J Immunol;111:921929.
  • 43
    Deonarain M.P., Spooner R.A., Epenetos A.A. (1996) Genetic delivery of enzymes for cancer therapy. Gene Ther;2:235244.
  • 44
    Singhal S., Kaiser L.R. (1998) Cancer chemotherapy using suicide genes. Surg Oncol Clin North Am;7:505536.
  • 45
    Aghi M., Hochberg F., Breakefield X.O. (2000) Prodrug activation enzymes in cancer gene therapy. J Gene Med;2:148164.
  • 46
    Greco O., Dachs G.U. (2001) Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol;187:2236.
  • 47
    Hu L. (2004) Prodrugs: effective solutions for solubility, permeability and targeting challenges. Drugs;7:736742.
  • 48
    Stella V.J., Borchardt R.T., Hageman M.J., Oliyai R., Maag H., Tilley J.W. (2007) Prodrugs: Challenges and Rewards Part 1 and 2. New York: Springer Science + Business Media.
  • 49
    Stella V.J., Charman W.N., Naringrekar V.H. (1985) Prodrugs. Do they have advantages in clinical practice? Drugs;29:455473.
  • 50
    Banerjee P.K., Amidon G.L. (1985) Design of prodrugs based on enzymes-substrate specificity. In: Bundgaard H., editor. Design of Prodrugs. New York: Elsevier; p. 93133.
  • 51
    Li F., Maag H., Alfredson T. (2008) Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J Pharm Sci;97:11091134.
  • 52
    Roche E.B. (1977) Design of Biopharmaceutical Properties through Prodrugs and Analogs. Washington, DC: American Pharmaceutical Association.
  • 53
    Di L., Kerns E.H. (2007) Solubility issues in early discovery and HTS. In: Augustijins P., Brewster M., editors. Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. New York: Springer Science + Business Media; p. 111136.
  • 54
    Fleisher D., Bong R., Stewart B.H. (1996) Improved oral drug delivery: solubility limitations overcome by the use of prodrugs. Adv Drug Deliv Rev;19:115130.
  • 55
    Tammara V.K., Narurkar M.M., Crider A.M., Khan M.A. (1994) Morpholinoalkyl ester prodrugs of diclofenac: synthesis, in vitro and in vivo evaluation. J Pharm Sci;83:644648.
  • 56
    del Amo E.M., Urtti A., Yliperttula M. (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci;35:161174.
  • 57
    Kim I., Song X., Vig B.S., Mittal S., Shin H.C., Lorenzi P.J., Amidon G.L. (2004) A novel nucleoside prodrug-activating enzyme: substrate specificity of biphenyl hydrolase-like protein. Mol Pharm;1:117127.
  • 58
    Bando H., Takagi T., Yamashita F., Takakura Y., Hashida M. (1996) Theoretical design of prodrug-enhancer combination based on a skin diffusion model: prediction of permeation of acyclovir prodrugs treated with l-Geranylazacycloheptan-2-one. Pharm Res;13:427432.
  • 59
    Kim I., Chu X.Y., Kim S., Provoda C.J., Lee K.D., Amidon G.L. (2003) Identification of a human valacyclovirase: biphenyl hydrolase-like protein as valacyclovir hydrolase. J Biol Chem;278:2534825356.
  • 60
    Bronson J.J., HO H.T., Boeck H.D., Woods K., Ghazzouli I., Martin J.C., Hitchcock M.J. (1990) Biochemical pharmacology of acyclic nucleotide analogues. Ann N Y Acad Sci;616:398407.
  • 61
    Cundy K.C., Barditch-Crovo P., Walker R.E., Collier A.C., Ebeling D., Toole J., Jaffe H.S. (1995) Clinical pharmacokinetics of adefovir in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother;39:24012405.
  • 62
    Cioli V., Putzolu S., Rossi V., Corradino C. (1980) A toxicological and pharmacological study of ibuprofen guaiacol ester (AF 2259) in the rat. Toxicol Appl Pharmacol;54:332339.
  • 63
    Croft D.N., Cuddigan J.H., Sweetland C. (1972) Gastric bleeding and benorylate, a new aspirin. Br Med J;3:545547.
  • 64
    Bhosle D., Bharambe S., Gairola N., Dhaneshwar S.S. (2006) Mutual prodrug concept: fundamentals and applications. Indian J Pharm Sci;68:286294.
  • 65
    Muscara M.N., McKnight W., Soldato P.D., Wallace J.L. (1998) Effect of a nitric oxide-releasing naproxen derivative on hypertension and gastric damage induced by chronic nitric oxide inhibition in the rat. Life Sci;62:PL235PL240.
  • 66
    Burgaud J.L., Riffaud J.P., Del Soldato P. (2002) Nitric-oxide releasing molecules: a new class of drugs with several major indications. Curr Pharm Des;8:201213.
  • 67
    Shanbhag V.R., Crider A.M., Gokhale R., Harpalani A., Dick R.M. (1992) Ester and amide prodrugs of ibuprofen and naproxen: synthesis, anti-inflammatory activity, and gastrointestinal toxicity. J Pharm Sci;81:149154.
  • 68
    English A.R., Girard D., Haskell S.L. (1984) Pharmacokinetics of sultamicillin in mice, rats, and dogs. Antimicrob Agents Chemother;25:599602.
  • 69
    Kalgutkar A.S., Marnett A.B., Crews B.C., Remmel R.P., Marnett L.J. (2000) Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J Med Chem;43:28602870.
  • 70
    Shan D., Nicolaou M.G., Borchardt R.T., Wang B. (1997) Prodrug strategies based on intramolecular cyclization reactions. J Pharm Sci;86:765767.
  • 71
    Lee M.R. (1990) Five years' experience with gamma-L-glutamyl-L-dopa: a relatively renally specific dopaminergic prodrug in man. J Auton Pharmacol;10(Suppl 1):s103s108.
  • 72
    Casagrande C., Merlo L., Ferrini R., Miragoli G., Semeraro C. (1989) Cardiovascular and renal action of dopaminergic prodrugs. J Cardiovasc Pharmacol;14(Suppl 8):S40S59.
  • 73
    Pochopin N.L., Charman W.N., Stella V.J. (1994) Pharmacokinetics of dapsone and amino acid prodrugs of dapsone. Drug Metab Dispos;22:770775.
  • 74
    Simplicio A.L., Clancy J.M., Gilmer J.F. (2008) Prodrugs for amines. Molecules;13:519547.
  • 75
    Bundgaard H. (1985) Design of Prodrug. p. 379.
  • 76
    Safadi M., Oliyai R., Stella V.J. (1993) Phosphoryloxymethyl carbamates and carbonates–novel water-soluble prodrugs for amines and hindered alcohols. Pharm Res;10:13501355.
  • 77
    Shechter Y., Tsubery H., Fridkin M. (2003) [2-Sulfo-9-fluorenylmethoxycarbonyl]3-exendin-4-a long-acting glucose-lowering prodrug. Biochem Biophys Res Commun;305:386391.
  • 78
    Hecker S.J., Calkins T., Price M.E., Huie K., Chen S., Glinka T.W., Dudley M.N. (2003) Prodrugs of cephalosporin RWJ-333441 (MC-04,546) with improved aqueous solubility. Antimicrob Agents Chemother;47:20432046.
  • 79
    Jordan A.M., Khan T.H., Malkin H., Osborn H.M.I. (2002) Synthesis and analysis of urea and carbamate prodrugs as candidates for melanocyte-directed enzyme prodrug therapy (MDEPT). Bioorg Med Chem;10:26252633.
  • 80
    Yumibe N., Hule K., Chen K.-J., Snow M., Clement R.P., Cayen M.N. (1996) Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem Pharmacol;51:165172.
  • 81
    Shimma N., Umeda I., Arasaki M., Murasaki C., Masubuchi K., Kohchi Y., Miwa M., Ura M., Sawada N., Tahara H., Kuruma I., Horii I., Ishitsuka H. (2000) The design and synthesis of a new tumor-selective fluoropyrimidine carbamate, capecitabine. Bioorg Med Chem;8:16971706.
  • 82
    Ajani J. (2006) Review of capecitabine as oral treatment of gastric, gastroesophageal, and esophageal cancers. Cancer;107:221231.
  • 83
    Alexander J., Carqill R., Michelson S.R., Schwam H. (1988) (Acyloxy)alkyl carbamates as novel bioreversible prodrugs for amines: increased permeation through biological membranes. J Med Chem;31:318322.
  • 84
    Venhuis B.J., Dijkstra D., Wustrow D., Meltzer L.T., Wise L.D., Johnson S.J., Wikström H.V. (2003) Orally active oxime derivatives of the dopaminergic prodrug 6-(N,N-di-n-propylamino)-3,4,5,6,7,8-hexahydro-2H-naphthalen-1-one. Synthesis and pharmacological activity. J Med Chem;46:41364140.
  • 85
    Madsen U., Krogsgaard-Larsen P., Liljefors T. (2002) Textbook of Drug Design and Discovery. Washington, DC: Taylor & Francis; p. 410458.
  • 86
    Testa B., Mayer J.M. (2003) Hydrolysis in Drug and Prodrug metabolism, Chemistry, biochemistry and enzymology. 690695.
  • 87
    Bundgaard H., Johansen M. (1980) Prodrugs as drug delivery systems IV: N-Mannich bases as potential novel prodrugs for amides, ureides, amines, and other NH-acidic compounds. J Pharm Sci;69:4446.
  • 88
    Caldwell H.C., Adams H.J., Jones R.G., Mann W.A., Dittert L.W., Chong C.W., Swintosky J.V. (1971) Enamine prodrugs. J Pharm Sci;60:18101812.
  • 89
    Murakami T., Tamauchi H., Yamazaki M., Kubo K., Kamada A., Yata N. (1981) Biopharmaceutical study on the oral and rectal administrations of enamine prodrugs of amino acid-like beta-lactam antibiotics in rabbits. Chem Pharm Bull;29:19861997.
  • 90
    Naringrekar V.H., Stella V.J. (1990) Mechanism of hydrolysis and structure-stability relationship of enaminones as potential prodrugs of model primary amines. J Pharm Sci;79:138146.
  • 91
    Chapman T.M., Plosker G.L., Perry C.M. (2004) Fosamprenavir: a review of its use in the management of antiretroviral therapy-naive patients with HIV infection. Drugs;64:21012124.
  • 92
    Boucher B.A. (1996) Fosphenytoin: a novel phenytoin prodrug. Pharmacotherapy;16:777791.
  • 93
    Azadkhan A.K., Truelove S.C., Aronson J.K. (1982) The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br J Clin Pharmacol;13:523528.
  • 94
    Sandborn W.J. (2002) Rational selection of oral 5-aminosalicylate formulations and prodrugs for the treatment of ulcerative colitis. Am J Gastroenterol;97:29392941.
    Direct Link:
  • 95
    Jung Y., Lee J., Kim Y. (2001) Colon-specific prodrug of 5-aminosalicylic acid: synthesis and in vitro/in vivo properties of acidic amino acid derivatives of 5-aminosalicylic acid. J Pharm Sci;90:17671775.
  • 96
    Greenwald R.B., Pendri A., Conover C.D., Zhao H., Choe Y.H., Martinez A., Shum K., Guan S. (1999) Drug delivery systems employing 1,4- or 1,6-elimination: poly(ethylene glycol) prodrugs of amine-containing compounds. J Med Chem;42:36573667.
  • 97
    Greenwald R.B., Choe Y.H., McGuire J., Conover C.D. (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev;55:217250.
  • 98
    Hanson K.R., Havir E.A. (1972) The enzymic elimination of ammonia. In: Boyer P.D., editor. The Enzymes, 3rd edn. vol. 7. New York: Academic Press; p 75166.
  • 99
    Czarnik A.W. (1988) Intramolecularity: proximity and strain. In: Liebman J.F., Greenberg A., editors. Mechanistic Principles of Enzyme Activity. New York, NY: VCH Publishers; p. 75117.
  • 100
    Sweigers G.F. (2008) Mechanical Catalysis. Hoboken, NJ: John Wiley & Sons.
  • 101
    Fersht A. (1979) Structure and Mechanism in Protein Science: A guide to Enzyme Catalysis and Protein Folding. New York: Freeman, W. H. and Company.
  • 102
    Nelson D.L., Cox M.M. (2003) Lehninger Principles of Biochemistry. New York: Worth Publishers.
  • 103
    Lightstone F.C., Bruice T.C. (1997) Separation of ground state and transition state effects in intramolecular and enzymatic reactions. 2. A theoretical study of the formation of transition states in cyclic anhydride formation. J Am Chem Soc;119:91039113.
  • 104
    Milstein S., Cohen L.A. (1972) Stereopopulation control I. Rate enhancement in the lactonizations of o-hydroxyhydrocinnamic acids. J Am Chem Soc;94:91589165.
  • 105
    Menger F.M. (2005) An alternative view of enzyme catalysis. Pure Appl Chem;77:18731876.
  • 106
    Kirby A.J., Hollfelder F. (2009) From Enzyme Models to Model Enzymes. Cambridge UK: RSC Publishing; p. 1273.
  • 107
    Dafforn A., Koshland D.E. Jr (1973) Proximity, entropy and orbital steering. Biochem Biophys Res Commun;52:779785.
  • 108
    Liederer B.M., Borchardt R.T. (2006) Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci;95:11771195.
  • 109
    Reddy M.R., Erion M.D., editors. (2001) Free Energy Calculations in Rational Drug Design. New York, NY: AAPS Press/Springer.
  • 110
    Parr R.G., Craig D.P., Ross I.G. (1950) Molecular orbital calculations of the lower excited electronic levels of benzene, configuration interaction included. J Chem Phys;18:15611563.
  • 111
    Parr R.G. (1990) On the genesis of a theory. Int J Quantum Chem;37:327347.
  • 112
    Chen T.C. (1955) Expansion of electronic wave functions of molecules in terms of ‘united-atom’ wave functions. J Chem Phys;23:22002201.
  • 113
    Dewar M.J.S., Thiel W. (1977) Ground states of molecules. The MNDO method. Approximations and parameters. J Am Chem Soc;99:48994907.
  • 114
    Bingham R.C., Dewar M.J.S., Lo D.H. (1975) Ground states of molecules. XXV. MINDO/3. An improved version of the MNDO semiempirical SCF-MO method. J Am Chem Soc;97:12851293.
  • 115
    Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc;107:39023907.
  • 116
    Dewar M.J.S., Jie C., Yu J. (1993) The first of new series of general purpose quantum mechanical molecular models. Tetrahedron;49:50035038.
  • 117
    Parr R.G., Yang W. (1989) Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press.
  • 118
    Burker U., Allinger N.L. (1982) Molecular Mechanics. Washington, DC, USA: American Chemical Society.
  • 119
    Warshel A., Levitt M. (1976) Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol;103:227249.
  • 120
    Field M.J. (2002) Simulating enzyme reactions: challenges and perspectives. J Comput Chem;23:4858.
  • 121
    Mulholland A.J. (2005) Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discovery Today;10:13931402.
  • 122
    Karaman R. (2008) Analysis of Menger's spatiotemporal hypothesis. Tetrahedron Lett;49:59986002.
  • 123
    Karaman R. (2009) Cleavage of Menger's aliphatic amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct;910:2733.
  • 124
    Karaman R. (2010) The efficiency of proton transfer in Kirby's enzyme model, a computational approach. Tetrahedron Lett;51:21302135.
  • 125
    Karaman R., Pascal R.A. (2010) Computational analysis of intramolecularity in proton transfer reactions. Org Biol Chem;8:51745178.
  • 126
    Karaman R. (2010) A general equation correlating intramolecular rates with attack” parameters: distance and angle. Tetrahedron Lett;51:51855190.
  • 127
    Karaman R. (2011) Analyzing the efficiency of proton transfer to carbon in Kirby's enzyme model- a computational approach. Tetrahedron Lett;52:699704.
  • 128
    Karaman R. (2011) Analyzing the efficiency in intramolecular amide hydrolysis of Kirby's N-alkylmaleamic acids - a computational approach. Comput Theor Chem;974:133142.
  • 129
    Karaman R. (2009) A new mathematical equation relating activation energy to bond angle and distance: a key for understanding the role of acceleration in lactonization of the trimethyl lock system. Bioorg Chem;37:1125.
  • 130
    Karaman R. (2009) Revaluation of Bruice's Proximity Orientation. Tetrahedron Lett;50:452458.
  • 131
    Karaman R. (2009) Accelerations in the Lactonization of Trimethyl Lock Systems are Due to Proximity Orientation and not to Strain Effects. Res Lett Org Chem:15.
  • 132
    Karaman R. (2009) The gem-disubstituent effect- a computational study that exposes the relevance of existing theoretical models. Tetrahedron Lett;50:60836087.
  • 133
    Karaman R. (2009) Analyzing Kirby's amine olefin – a model for amino-acid ammonia lyases. Tetrahedron Lett;50:73047309.
  • 134
    Karaman R. (2009) The Effective Molarity (EM) Puzzle in Proton Transfer Reactions. Bioorg Chem;37:106110.
  • 135
    Karaman R. (2010) Effects of substitution on the effective molarity (EM) for five membered ring-closure reactions- a computational approach. J Mol Struct;939:6974.
  • 136
    Karaman R. (2010) The Effective Molarity (EM) Puzzle in Intramolecular Ring-Closing Reactions. J Mol Struct;940:7075.
  • 137
    Menger F.M., Karaman R. (2010) A Singularity Model for Chemical Reactivity. Eur J Chem;16:14201427.
  • 138
    Karaman R. (2010) The Effective Molarity (EM) – a computational approach. Bioorg Chem;38:165172.
  • 139
    Karaman R. (2010) Proximity vs. Strain in Ring-Closing Reactions of Bifunctional Chain Molecules- a Computational Approach. J Mol Phys;108:17231730.
  • 140
    Karaman R. (2011) The role of proximity orientation in intramolecular proton transfer reactions. J Comput Theor Chem;966:311321.
  • 141
    Barber S.E., Dean K.E., Kirby A.J. (1999) A mechanism for efficient proton-transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of 1-arylethyl ethers of salicylic acid. Can J Chem;77:792801.
  • 142
    Kirby A.J., Lancaster P.W. (1972) Structure and efficiency in intramolecular and enzymatic catalysis. Catalysis of amide hydrolysis by the carboxy-group of substituted maleamic acids. J Chem Soc Perkin Trans;2:12061214.
  • 143
    Kirby A.J., de Silva M.F., Lima D., Roussev C.D., Nome F. (2006) Efficient intramolecular general acid catalysis of nucleophilic attack on a phosphodiester. J Am Chem Soc;128:1694416952.
  • 144
    Kirby A.J., Williams N.H. (1994) Efficient intramolecular general acid catalysis of enol ether hydrolysis. Hydrogen-bonding stabilization of the transition state for proton transfer to carbon. J Chem Soc Perkin Trans;2:643648.
  • 145
    Kirby A.J., Williams N.H. (1991) Efficient intramolecular general acid catalysis of vinyl ether hydrolysis by the neighbouring carboxylic acid group. J Chem Soc Chem Commun:16431644.
  • 146
    Kirby A.J. (1996) Enzyme Mechanisms, Models, and Mimics. Angew Chem Int Ed Engl;35:706724.
  • 147
    Fife T.H., Przystas T.J. (1979) Intramolecular general acid catalysis in the hydrolysis of acetals with aliphatic alcohol leaving groups. J Am Chem Soc;101:12021210.
  • 148
    Kirby A.J. (1997) Efficiency of proton transfer catalysis in models and enzymes. Acc Chem Res;30:290296.
  • 149
    Menger F.M., Ladika M. (1988) Fast hydrolysis of an aliphatic amide at neutral pH and ambient temperature. A peptidase model. J Am Chem Soc;110:67946796.
  • 150
    Menger F.M. (1985) On the source of intramolecular and enzymatic reactivity. Acc Chem Res;18:128134.
  • 151
    Menger F.M., Chow J.F., Kaiserman H., Vasquez P.C. (1983) Directionality of proton transfer in solution. Three systems of known angularity. J Am Chem Soc;105:49965002.
  • 152
    Menger F.M., Galloway A.L., Musaev D.G. (2003) Relationship between rate and distance. Chem Commun:23702371.
  • 153
    Milstein S., Cohen L.A. (1970) Concurrent general-acid and general-base catalysis of esterification. J Am Chem Soc;92:43774382.
  • 154
    Milstein S., Cohen L.A. (1970) Rate acceleration by stereopopulation control: models for enzyme action. Proc Natl Acad Sci USA;67:11431147.
  • 155
    Brown R.F., van Gulick N.M. (1956) The geminal alkyl effect on the rates of ring closure of bromobutylamines. J Org Chem;21:10461049.
  • 156
    Bruice T.C., Pandit U.K. (1960) The effect of geminal substitution ring size and rotamer distribution on the intra molecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the intermediate anhydrides. J Am Chem Soc;82:58585865.
  • 157
    Bruice T.C., Pandit U.K. (1960) Intramolecular models depicting the kinetic importance of ‘‘Fit’’ in enzymatic catalysis. Proc Natl Acad Sci USA;46:402404.
  • 158
    Galli C., Mandolini L. (2000) The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur J Org Chem;2000:31173125.
  • 159
    Karaman R. (2010) Prodrugs of Aza Nucleosides Based on Proton Transfer Reactions. J Comput Aided Mol Des;24:961970.
  • 160
    Karaman R., Hallak H. (2010) Computer-assisted design of pro-drugs for antimalarial atovaquone. Chem Biol Drug Des;76:350360.
  • 161
    Hejaz H., Karaman R., Khamis M. (2012) Computer-Assisted Design for paracetamol Masking Bitter Taste Prodrugs. J Mol Model;18:103114.
  • 162
    Karaman R., Karaman D., Zeiadeh I. (2013) Computationally designed phenylephrine prodrugs - A model for enhancing bioavailability. J Mol Phys. doi: 10.1080/00268976.2013.779395.
  • 163
    Karaman R., Dajani K.K., Qtait A., Khamis M. (2012) Prodrugs of Acyclovir - a computational approach. Chem Biol Drug Des;79:819834.
  • 164
    Karaman R., Dajani K.K., Hallak H. (2012) Computer-assisted design for atenolol prodrugs for the use in aqueous formulations. J Mol Model;18:15231540.
  • 165
    Karaman R., Amly W., Scrano L., Mecca G., Bufo S.A. (2013) Computationally designed prodrugs of statins based on Kirby's enzyme model. J Mol Model;114.
  • 166
    Karaman R. (2013) Prodrugs for Masking Bitter Taste of Antibacterial Drugs - A Computational Approach. J Mol Model;19:23992412.
  • 167
    Karaman R. (2012) The future of prodrugs designed by computational chemistry. J Drug Design;1:e103.
  • 168
    Karaman R. (2012) Computationally designed prodrugs for masking the bitter taste of drugs. J Drug Design;1:e106.
  • 169
    Karaman R. (2013) prodrugs design by computation methods- a new era. J Drug Design;1:e113.
  • 170
    Karaman R. (2012) Computationally designed enzyme models to replace natural enzymes in prodrug approaches. J Drug Design;1:e111.
  • 171
    Karaman R. (2013) Prodrug design vs. drug design. J Drug Design;2:e114.
  • 172
    Karaman R. (2011) Computational aided design for dopamine prodrugs based on novel chemical approach. Chem Biol Drug Des;78:853863.
  • 173
    Karaman R., Dokmak G., Bader M., Hallak H., Khamis M., Scrano L., Bufo S.A. (2013) Prodrugs of fumarate esters for the treatment of psoriasis and multiple sclerosis (MS)- A computational approach” J. Mol Model;19:439452.
  • 174
    Kluger R., Chin J. (1982) Carboxylic acid participation in amide hydrolysis. Evidence that separation of a nonbonded complex can be rate determining. J Am Chem Soc;104:28912897.
  • 175
    CRASH-2 Trial Collaborators (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant hemorrhage (CRASH-2): a randomized, placebo-controlled trial. Lancet;6736:608355.
  • 176
    Gohel M., Patel P., Gupta A., Desai P. (2007) Efficacy of tranexamic acid in decreasing blood loss during and after cesarean section: a randomized case controlled prospective study. J Obstet Gynecol India;57:227230.
  • 177
    Giancarlo L., Francesco B., Angela L., Pierluigi P., Gina R. (2011) Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus;9:189217.
  • 178
    Lukes A.S., Kouides P.A., Moore K.A. (2011) Tranexamic acid: a novel oral formulation for the treatment of heavy menstrual bleeding. Women's Health;7:151158.
  • 179
    Lukes A.S., Moore K.A., Muse K.N., Gersten J.K., Hecht B.R., Edlund M Richter H.E., Eder S.E., Attia G.R., Patrick D.L., Rubin A., Shangold G.A. (2010) Tranexamic acid treatment for heavy menstrual bleeding: a randomized controlled trial. Obstet Gynecol;116:865875.
  • 180
    Pilbrant A., Schannong M., Vessman J. (1981) Pharmacokinetics and bioavailability of tranexamic acid. Eur J Clin Pharmacol;20:6572.
  • 181
    Kirby A.J. (2005) effective molarities for intramolecular reactions. J Phys Org Chem;18:101278.
  • 182
    de Clercq E., Field H.J. (2006) Antiviral prodrugs — the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol;147:111.
  • 183
    de Miranda P., Blum M.R. (1983) Pharmacokinetics of acyclovir after intravenous and oral administration. J Antimicrob Chemother;12(Suppl B): 2937.
  • 184
    Blum M.R., Liao S.H.T., de Miranda P. (1982) Overview of aciclovir pharmacokinetic disposition in adults and children. Am J Med;73(Suppl. 1A):186192.
  • 185
    Luengo J., Aranguiz T., Sepulveda J. (2002) Preliminary pharmacokinetic study to different preparations of acyclovir with β-cyclodextrin. J Pharm Sci;91:25932598.
  • 186
    Attia I.A., El-Gizawy S.A., Fouda M.A., Donia A.M. (2007) Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS Pharm Sci Tech;8:Article 106 doi: 10.1208/pt0804106.
  • 187
    Yadav S., Jain S., Prajapati S., Motwani M., Kumar S. (2011) Formulation and in vitro and in vivo characterization of acyclovir loaded mucoadhesive microspheres. J Pharm Sci Tech;3:411447.
  • 188
    Soul-Lawton J., Seaber E., On N., Wootton R., Rolan P., Posner J. (1995) Absolute bioavailability and metabolic disposition of valacyclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother;39:27592764.
  • 189
    Tolle-Sander S., Lentz K.A., Maeda D.Y., Coop A., Polli J.E. (2004) Increased Acyclovir Oral Bioavailability via a Bile Acid Conjugate. Mol Pharm;1:4048.
  • 190
    Houk K.N., Tucker J.A., Dorigo A.E. (1990) Quantitative modeling of proximity effects on organic reactivity. Acc Chem Res;23:107113.
  • 191
    Reinaldo T. (2003) Antimalarial drug discovery: old and new approaches. J Exp Biol;206:37353744.
  • 192
    Chung M.C., Ferreira E.I., Santos J.L., Giarolla J., Rando D.G., Almeida A.E., Bosquesi P.L., Menegon R.F., Blau L. (2008) Prodrugs for the treatment of neglected diseases. Molecules;13:616677.
  • 193
    Peterson A.T. (2009) Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect Dis;9:59.
  • 194
    Hitani A., Nakamura T., Ohtomo H., Nawa Y., Kimura M. (2006) Efficacy and safety of atovaquone-proguanil compared with mefloquine in the treatment of nonimmune patients with uncomplicated P. falciparum malaria in Japan. J Infect Chemother;12:277282.
  • 195
    Vial H.J., Wein S., Farenc C., Kocken C., Nicolas O., Ancelin M.L., Bressolle F., Thomas A., Calas M. (2004) Prodrugs of bisthiazolium salts are orally potent antimalarials. Proc Natl Acad Sci USA;101:1545815463.
  • 196
    Hudson A.T., Dickins M., Ginger C.D., Gutteridge W.E., Holdich T., Hutchinson D.B., Pudney M., Randall A.W., Latter V.S. (1991) 566C80: a potent broad spectrum anti-infective agent with activity against malaria and opportunistic infections in AIDS patients. Drugs Exp Clin Res;17:427435.
  • 197
    Fry M., Pudney M. (1992) Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3- hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol;43:15451553.
  • 198
    Looareesuwan S., Chulay J.D., Canfield C.J., Hutchinson D.B. (1999) Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone Clinical Trials Study Group. Am J Trop Med Hyg;60:533541.
  • 199
    Comley J.C., Yeates C.L., Frend T.J. (1995) Antipneumocystis activity of 17C91, a prodrug of atovaquone. Antimicrob Agents Chemother;39:22172219.
  • 200
    Haile L.G., Flaherty J.F. (1993) Atovaquone: a review. Ann Pharmacother;27:14881494.
  • 201
    Torres R.A., Weinberg W., Stansell J., Leoung G., Kovacs J., Rogers M., Scott J. (1997) Atovaquone for salvage treatment and suppression of toxoplasmic encephalitis in patients with AIDS. Atovaquone/Toxoplasmic Encephalitis Study Group. Clin Infect Dis;24:422429.
  • 202
    Sohi H., Sultana Y., Khar R.K. (2004) Taste Masking Technologies in oral pharmaceuticals, recent development and approaches. Drug Develop Ind Pharm;30:429448.
  • 203
    Reilly W.J. (2002) Pharmaceutical Necessities in Remington: The Science and Practice of Pharmacy. Baltimore, MD: Mack Publishing Company; p. 10181020.
  • 204
    Drewnowski A., Gomez-Carneros C. (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr;72:14241435.
  • 205
    Hofmann T. (2009) Identification of the key bitter compounds in our daily diet is a prerequisite for the understanding of the hTAS2R gene polymorphisms affecting food choice. Ann N Y Acad Sci;1170:116125.
  • 206
    Rodgers S., Busch J., Peters H., Christ-Hazelhof E. (2005) Building a tree of knowledge: analysis of bitter molecules. Chem Senses;30:547557.
  • 207
    Rodgers S., Glen R.C., Bender A. (2006) Characterizing bitterness: identification of key structural features and development of a classification model. J Chem Inf Model;46:569576.
  • 208
    Maehashi K., Huang L. (2009) Bitter peptides and bitter taste receptors. Cell Mol Life Sci;66:16611671.
  • 209
    Behrens M., Meyerhof W. (2006) Bitter taste receptors and human bitter taste perception. Cell Mol Life Sci;63:15011509.
  • 210
    Meyerhof W., Born S., Brockhoff A., Behrens M. (2011) Molecular biology of mammalian bitter taste receptors. A review. Flavour Frag J;26:260268.
  • 211
    Behrens M., Meyerhof W. (2009) Mammalian bitter taste perception. Results Probl Cell Differ;47:203220.
  • 212
    Ayenew Z., Puri V., Kumar L., Bansal A.K. (2009) Trends in pharmaceutical taste masking technologies: a patent review. Recent Pat Drug Deliv Formul;3:2639.