• Escherichia coli;
  • FimH lectin;
  • hemagglutination;
  • molecular modeling;
  • N-aryl-substituted 3-hydroxypyridine-4-ones;
  • α-mannopyranosides

Structural alterations of the aglycon portions of α-mannosides influence their inhibitory potency toward type 1-fimbriated Escherichia coli. The aim of our work was to prepare and explore inhibitory properties of novel mannosylated N-aryl-substituted 3-hydroxypyridine-4-ones because they possess needed structural characteristics as possible FimH antagonists. Hemagglutination inhibitory tests showed that the examined 3-hydroxypyridine-4-one α-mannosides exhibited better inhibitory activity than methyl α-d-mannopyranoside used as a reference compound. Molecular modeling studies revealed the specific interactions responsible for the observed binding activities toward the mannose-specific FimH lectin. The activity depends on the substituent in p-position on the aglycon aromatic ring.