SEARCH

SEARCH BY CITATION

References

  • 1
    Eisenbarth GS, Lafferty K. Type 1 diabetes: cellular, molecular and clinical immunology. 2009. Available at: http://www.uchsc.edu/misc/diabetes/books.html (accessed 2012).
  • 2
    Zhang L, Gianani R, Nakayama M et al. Type 1 diabetes: chronic progressive autoimmune disease. Novartis Found Symp 2008; 292:8594.
  • 3
    Bluestone JA, Herold K, Eisenbarth GS. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464:12931300.
  • 4
    Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med 2009; 360:16461654.
  • 5
    Barrett JC, Clayton DG, Concannon P et al. Type 1 Diabetes Genetics Consortium. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41:703707.
  • 6
    Bottini N, Musumeci L, Alonso A et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36:337338.
  • 7
    Zheng W, She JX. Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and type 1 diabetes. Diabetes 2005; 54:906908.
  • 8
    Stanford SM, Mustelin TM, Bottini N. Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases. Semin Immunopathol 2010; 32:127136.
  • 9
    Rieck M, Arechiga A, Onengut-Gumuscu S, Greenbaum C, Concannon P, Buckner JH. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. Immunology 2007; 179:47044710.
  • 10
    Smyth D, Cooper JD, Collins JE et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53:30203023.
  • 11
    Criswell LA, Pfeiffer KA, Lum RF et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76:561571.
  • 12
    Grunnet LG, Mandrup-Poulsen T. Cytokines and type 1 diabetes: a numbers game. Diabetes 2011; 60:697699.
  • 13
    Sutherland AP, Van Belle T, Wurster AL et al. Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 2009; 58:11441155.
  • 14
    Petrelli A, Carvello M, Vergani A, Lee KM et al. IL-21 is an antitolerogenic cytokine of the late-phase alloimmune response. Diabetes 2011; 60:32233234.
  • 15
    Parrish-Novak J, Dillon SR, Nelson A et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408:5763.
  • 16
    Li Y, Bleakley M, Yee C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 2005; 175:22612269.
  • 17
    Sivori S, Cantoni C, Parolini S et al. IL-21 induces both rapid maturation of human CD4_ T cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 2003; 33:34393447.
  • 18
    Peluso I, Fantini MC, Fina D et al. IL-21 counteracts the regulatory T cell mediated suppression of human CD4_ T lymphocytes. J Immunol 2007; 178:732739.
  • 19
    Datta S, Sarvetnick NE. IL-21 Limits peripheral lymphocyte numbers through T cell homeostatic mechanisms. PLoS ONE 2008; 3:e3118.
  • 20
    Maiti AK, Kim-Howard X, Viswanathan P et al. Confirmation of an association between rs6822844 at the Il2-Il21 region and multiple autoimmune diseases: evidence of a general susceptibility locus. Arthritis Rheum 2010; 62:323329.
  • 21
    Ferraro A, Socci C, Stabilini A et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes 2011; 60:29032913.
  • 22
    Arif S, Moore F, Marks K et al. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated β-cell death. Diabetes 2011; 60:21122119.
  • 23
    Novo Monteleone G, Sarra M, Pallone F. Interleukin-21 in T cell-mediated diseases. Discov Med 2009; 8:113117.
  • 24
    Sarra M, Pallone F, Macdonald TT, Monteleone G. Targeting interleukin-21 in immune-mediated pathologies. Curr Drug Targets 2010; 11:645649.
  • 25
    Mehta DS, Wurster AL, Weinmann AS, Grusby MJ. NFATc2 and T-bet contribute to T-helper-cell-subset-specific regulation of IL-21 expression. Proc Natl Acad Sci USA 2005; 102:20162021.
  • 26
    Hiramatsu Y, Suto A, Kashiwakuma D et al. c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-beta inhibits c-Maf-induced IL-21 production in CD4+ T cells. J Leukoc Biol 2010; 87:703712.
  • 27
    Tsirogianni A, Pipi E, Soufleros K. Specificity of islet cell autoantibodies and coexistence with other organ specific autoantibodies in type 1 diabetes mellitus. Autoimmun Rev 2009; 8:687691.
  • 28
    Triolo TM, Armstrong TK, McFann K et al. One-third of patients have evidence for an additional autoimmune disease at type 1 diabetes diagnosis. Diabetes Care 2011; 34:12111213.
  • 29
    Staii A, Mirocha S, Todorova-Koteva K, Glinberg S, Jaume JC. Hashimoto thyroiditis is more frequent than expected when diagnosed by cytology which uncovers a pre-clinical state. Thyroid Res 2010; 3:11.
  • 30
    Ergür AT, Oçal G, Berberoğlu M, Adıyaman P, Sıklar Z, Aycan Z. Celiac disease and autoimmune thyroid disease in children with type 1 diabetes mellitus: clinical and HLA-genotyping results. J Clin Res Pediatr Endocrinol 2010; 2:151154.
  • 31
    Erichsen MM, Løvås K, Skinningsrud B et al. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: observations from a Norwegian registry. J Clin Endocrinol Metab 2009; 94:48824890.
  • 32
    Lahner E, Annibale B. Pernicious anemia: new insights from a gastroenterological point of view. World J Gastroenterol 2009; 15:51215128.
  • 33
    Cattan D. Pernicious anemia: what are the actual diagnosis criteria? World J Gastroenterol 2011; 17:543544.
  • 34
    Uibo R, Panarina M, Teesalu K et al. Celiac disease in patients with type 1 diabetes: a condition with distinct changes in intestinal immunity? Cell Mol Immunol 2011; 8:150156.
  • 35
    de Graaff LC, Martín-Martorell P, Baan J, Ballieux B, Smit JW, Radder JK. Long-term follow-up of organ-specific antibodies and related organ dysfunction in type 1 diabetes mellitus. Neth J Med 2011; 69:6671.
  • 36
    Lins TC, Vieira RG, Abreu BS, Grattapaglia D, Pereira RW. Genetic composition of Brazilian population samples based on a set of twenty-eight ancestry informative SNPs. Am Hum Biol 2010; 22:187192.
  • 37
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011; 34 (Suppl. 1):S6269.
  • 38
    Asano K, Ikegami H, Fujisawa T et al. Molecular scanning of interleukin-21 gene and genetic susceptibility to type 1 diabetes. Hum Immunol 2007; 68:384391.
  • 39
    Hermann R, Lipponen K, Kiviniemi M et al. Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 2006; 49:11981208.
  • 40
    Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 2005; 50:264266.
  • 41
    Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T. Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 2007; 77 (Suppl. 1):S116121.