SEARCH

SEARCH BY CITATION

References

  • 1
    Martin TR, Frevert CW. Innate immunity in the lungs. Proc Am Thorac Soc 2005; 2:403411.
  • 2
    Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27:669692.
  • 3
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8:958969.
  • 4
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3:2335.
  • 5
    Thomas ED, Ramberg RE, Sale GE, Sparkes RS, Golde DW. Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 1976; 192:10161018.
  • 6
    Sawyer RT, Strausbauch PH, Volkman A. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab Invest 1982; 46:165170.
  • 7
    Landsman L, Jung S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 2007; 179:34883494.
  • 8
    Landsman L, Varol C, Jung S. Distinct differentiation potential of blood monocyte subsets in the lung. J Immunol 2007; 178:20002007.
  • 9
    Jenkins SJ, Ruckerl D, Cook PC et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011; 332:12841288.
  • 10
    Murphy J, Summer R, Wilson AA, Kotton DN, Fine A. The prolonged life-span of alveolar macrophages. Am J Respir Cell Mol Biol 2008; 38:380385.
  • 11
    Liu H, Perlman H, Pagliari LJ, Pope RM. Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-kappaB, Bad, or caspase activation. J Exp Med 2001; 194:113126.
  • 12
    Pagliari LJ, Perlman H, Liu H, Pope RM. Macrophages require constitutive NF-kappaB activation to maintain A1 expression and mitochondrial homeostasis. Mol Cell Biol 2000; 20:88558865.
  • 13
    Perlman H, Pagliari LJ, Georganas C, Mano T, Walsh K, Pope RM. FLICE-inhibitory protein expression during macrophage differentiation confers resistance to Fas-mediated apoptosis. J Exp Med 1999; 190:16791688.
  • 14
    Piantadosi CA, Schwartz DA. The acute respiratory distress syndrome. Ann Intern Med 2004; 141:460470.
  • 15
    Jones C, Williams T, Walker K et al. M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res 2013; 14:41. doi: 10.1186/1465-9921-14-41.
  • 16
    Duan M, Li WC, Vlahos R, Maxwell MJ, Anderson GP, Hibbs ML. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. J Immunol 2012; 189:946955.
  • 17
    Sokol RJ, Hudson G, James NT, Frost IJ, Wales J. Human macrophage development: a morphometric study. J Anat 1987; 151:2735.
  • 18
    Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol 1983; 96:127.
  • 19
    Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17:593623.
  • 20
    Cohn ZA, Benson B. The differentiation of mononuclear phagocytes. Morphology, cytochemistry, and biochemistry. J Exp Med 1965; 121:153170.
  • 21
    Cohn ZA, Fedorko ME, Hirsch JG. The in vitro differentiation of mononuclear phagocytes. V. The formation of macrophage lysosomes. J Exp Med 1966; 123:757766.
  • 22
    Kradin RL, McCarthy KM, Preffer FI, Schneeberger EE. Flow-cytometric and ultrastructural analysis of alveolar macrophage maturation. J Leukoc Biol 1986; 40:407417.
  • 23
    Cohen AB, Cline MJ. The human alveolar macrophage: isolation, cultivation in vitro, and studies of morphologic and functional characteristics. J Clin Invest 1971; 50:13901398.
  • 24
    Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 1998; 92:30073017.
  • 25
    West AP, Brodsky IE, Rahner C et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011; 472:476480.
  • 26
    MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15:323350.
  • 27
    Ip WK, Sokolovska A, Charriere GM et al. Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus. J Immunol 2010; 184:70717081.
  • 28
    Wolf AJ, Arruda A, Reyes CN et al. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria. J Immunol 2011; 187:60026010.
  • 29
    File TM, Jr, Marrie TJ. Burden of community-acquired pneumonia in North American adults. Postgrad Med 2010; 122:130141.
  • 30
    Dockrell DH, Marriott HM, Prince LR et al. Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol 2003; 171:53805388.
  • 31
    Knapp S, Leemans JC, Florquin S et al. Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med 2003; 167:171179.
  • 32
    Marriott HM, Bingle CD, Read RC et al. Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance. J Clin Invest 2005; 115:359368.
  • 33
    Marriott HM, Hellewell PG, Whyte MK, Dockrell DH. Contrasting roles for reactive oxygen species and nitric oxide in the innate response to pulmonary infection with Streptococcus pneumoniae. Vaccine 2007; 25:24852490.
  • 34
    Bewley MA, Marriott HM, Tulone C et al. A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci. PLoS Pathog 2011; 7:e1001262.
  • 35
    Marriott HM, Gascoyne KA, Gowda R et al. IL-1beta regulates CXCL8 release and influences disease outcome in response to Streptococcus pneumoniae, defining intracellular cooperation between pulmonary epithelial cells and macrophages. Infect Immun 2012; 80:11401149.
  • 36
    Dockrell DH, Lee M, Lynch DH, Read RC. Immune-mediated phagocytosis and killing of Streptococcus pneumoniae are associated with direct and bystander macrophage apoptosis. J Infect Dis 2001; 184:713722.
  • 37
    Marriott HM, Hellewell PG, Cross SS, Ince PG, Whyte MK, Dockrell DH. Decreased alveolar macrophage apoptosis is associated with increased pulmonary inflammation in a murine model of pneumococcal pneumonia. J Immunol 2006; 177:64806488.
  • 38
    Marriott HM, Daigneault M, Thompson AA et al. A decoy receptor 3 analogue reduces localised defects in phagocyte function in pneumococcal pneumonia. Thorax 2012; 67:985992.
  • 39
    Dockrell DH, Whyte MK, Mitchell TJ. Pneumococcal pneumonia: mechanisms of infection and resolution. Chest 2012; 142:482491.
  • 40
    Boucheron N, Sharif O, Schebesta A et al. The protein tyrosine kinase Tec regulates a CD44highCD62L– Th17 subset. J Immunol 2010; 185:51115119.
  • 41
    Olliver M, Hiew J, Mellroth P, Henriques-Normark B, Bergman P. Human monocytes promote Th1 and Th17 responses to Streptococcus pneumoniae. Infect Immun 2011; 79:42104217.
  • 42
    Weber SE, Tian H, Pirofski LA. CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. J Immunol 2011; 186:432442.
  • 43
    Zhang Z, Clarke TB, Weiser JN. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 2009; 119:18991909.
  • 44
    Brigl M, Tatituri RV, Watts GF et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 2011; 208:11631177.
  • 45
    Kinjo Y, Illarionov P, Vela JL et al. Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 2011; 12:966974.
  • 46
    Dockrell DH. Apoptotic cell death in the pathogenesis of infectious diseases. J Infect 2001; 42:227234.
  • 47
    Daigneault M, De Silva TI, Bewley MA et al. Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection. PLoS Pathog 2012; 8:e1002814.
  • 48
    Badley AD, Dockrell D, Simpson M et al. Macrophage-dependent apoptosis of CD4+ T lymphocytes from HIV-infected individuals is mediated by FasL and tumor necrosis factor. J Exp Med 1997; 185:5564.
  • 49
    Biggar WD, Buron S, Holmes B. Bactericidal mechanisms in rabbit alveolar macrophages: evidence against peroxidase and hydrogen peroxide bactericidal mechanisms. Infect Immun 1976; 14:610.
  • 50
    Marriott HM, Jackson LE, Wilkinson TS et al. Reactive oxygen species regulate neutrophil recruitment and survival in pneumococcal pneumonia. Am J Respir Crit Care Med 2008; 177:887895.
  • 51
    Standish AJ, Weiser JN. Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol 2009; 183:26022609.
  • 52
    Hoffmann O, Zweigner J, Smith SH et al. Interplay of pneumococcal hydrogen peroxide and host-derived nitric oxide. Infect Immun 2006; 74:50585066.
  • 53
    Pericone CD, Overweg K, Hermans PW, Weiser JN. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 2000; 68:39903997.
  • 54
    Taniai H, Iida K, Seki M et al. Concerted action of lactate oxidase and pyruvate oxidase in aerobic growth of Streptococcus pneumoniae: role of lactate as an energy source. J Bacteriol 2008; 190:35723579.
  • 55
    Yesilkaya H, Kadioglu A, Gingles N, Alexander JE, Mitchell TJ, Andrew PW. Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun 2000; 68:28192826.
  • 56
    Yu J, Bryant AP, Marra A et al. Characterization of the Streptococcus pneumoniae NADH oxidase that is required for infection. Microbiology 2001; 147:431438.
  • 57
    Pericone CD, Park S, Imlay JA, Weiser JN. Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the Fenton reaction. J Bacteriol 2003; 185:68156825.
  • 58
    McAllister LJ, Tseng HJ, Ogunniyi AD, Jennings MP, McEwan AG, Paton JC. Molecular analysis of the PsA permease complex of Streptococcus pneumoniae. Mol Microbiol 2004; 53:889901.
  • 59
    Tseng HJ, McEwan AG, Paton JC, Jennings MP. Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect Immun 2002; 70:16351639.
  • 60
    Potter AJ, Kidd SP, McEwan AG, Paton JC. The MerR/NmlR family transcription factor of Streptococcus pneumoniae responds to carbonyl stress and modulates hydrogen peroxide production. J Bacteriol 2010; 192:40634066.
  • 61
    Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ. Role of HtrA in the virulence and competence of Streptococcus pneumoniae. Infect Immun 2004; 72:35843591.
  • 62
    Paterson GK, Blue CE, Mitchell TJ. An operon in Streptococcus pneumoniae containing a putative alkylhydroperoxidase D homologue contributes to virulence and the response to oxidative stress. Microb Pathog 2006; 40:152160.
  • 63
    Robertson GT, Ng WL, Foley J, Gilmour R, Winkler ME. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 2002; 184:35083520.
  • 64
    Bortoni ME, Terra VS, Hinds J, Andrew PW, Yesilkaya H. The pneumococcal response to oxidative stress includes a role for Rgg. Microbiology 2009; 155:41234134.
  • 65
    Andisi VF, Hinojosa CA, de Jong A, Kuipers OP, Orihuela CJ, Bijlsma JJ. Pneumococcal gene complex involved in resistance to extracellular oxidative stress. Infect Immun 2012; 80:10371049.
  • 66
    Orman KL, Shenep JL, English BK. Pneumococci stimulate the production of the inducible nitric oxide synthase and nitric oxide by murine macrophages. J Infect Dis 1998; 178:16491657.
  • 67
    Braun JS, Novak R, Gao G, Murray PJ, Shenep JL. Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immun 1999; 67:37503756.
  • 68
    Marriott HM, Ali F, Read RC, Mitchell TJ, Whyte MK, Dockrell DH. Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J 2004; 18:11261128.
  • 69
    Kerr AR, Wei XQ, Andrew PW, Mitchell TJ. Nitric oxide exerts distinct effects in local and systemic infections with Streptococcus pneumoniae. Microb Pathog 2004; 36:303310.
  • 70
    Peppoloni S, Colombari B, Neglia R et al. The lack of Pneumococcal surface protein C (PspC) increases the susceptibility of Streptococcus pneumoniae to the killing by microglia. Med Microbiol Immunol (Berl) 2006; 195:2128.
  • 71
    Stroeher UH, Kidd SP, Stafford SL, Jennings MP, Paton JC, McEwan AG. A pneumococcal MerR-like regulator and S-nitrosoglutathione reductase are required for systemic virulence. J Infect Dis 2007; 196:18201826.
  • 72
    Park CY, Kim EH, Choi SY et al. Virulence attenuation of Streptococcus pneumoniae clpP mutant by sensitivity to oxidative stress in macrophages via an NO-mediated pathway. J Microbiol 2010; 48:229235.
  • 73
    Jesch NK, Dorger M, Enders G et al. Expression of inducible nitric oxide synthase and formation of nitric oxide by alveolar macrophages: an interspecies comparison. Environ Health Perspect 1997; 105 (Suppl. 5):12971300.
  • 74
    Keane J, Balcewicz-Sablinska MK, Remold HG et al. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 1997; 65:298304.
  • 75
    Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 2000; 164:20162020.
  • 76
    Ali F, Lee ME, Iannelli F et al. Streptococcus pneumoniae-associated human macrophage apoptosis after bacterial internalization via complement and Fcgamma receptors correlates with intracellular bacterial load. J Infect Dis 2003; 188:11191131.
  • 77
    Weber S, Tian H, van Rooijen N, Pirofski LA. A serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibody requires Fcgamma receptor III and macrophages to mediate protection against pneumococcal pneumonia in mice. Infect Immun 2012; 80:13141322.
  • 78
    Srivastava A, Henneke P, Visintin A et al. The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 2005; 73:64796487.
  • 79
    Bewley MA, Pham TK, Marriott HM et al. Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae. Mol Cell Proteomics 2011; 10:M111 008193.
  • 80
    Webster SJ, Daigneault M, Bewley MA et al. Distinct cell death programs in monocytes regulate innate responses following challenge with common causes of invasive bacterial disease. J Immunol 2010; 185:29682979.
  • 81
    Dela Cruz CS, Liu W, He CH et al. Chitinase 3-like-1 promotes Streptococcus pneumoniae killing and augments host tolerance to lung antibacterial responses. Cell Host Microbe 2012; 12:3446.
  • 82
    Schubert KM, Duronio V. Distinct roles for extracellular-signal-regulated protein kinase (ERK) mitogen-activated protein kinases and phosphatidylinositol 3-kinase in the regulation of Mcl-1 synthesis. Biochem J 2001; 356:473480.
  • 83
    Boya P, Andreau K, Poncet D et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 2003; 197:13231334.
  • 84
    Jin M, Opalek JM, Marsh CB, Wu HM. Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am J Respir Cell Mol Biol 2004; 31:322329.
  • 85
    Kato T, Kojima K, Murachi T. Proteases of macrophages in rat peritoneal exudate, with special reference to the effects of actinomycete protease inhibitors. Biochim Biophys Acta 1972; 289:187193.
  • 86
    Fang R, Tsuchiya K, Kawamura I et al. Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol 2011; 187:48904899.
  • 87
    McNeela EA, Burke A, Neill DR et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 2010; 6:e1001191.
  • 88
    Witzenrath M, Pache F, Lorenz D et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 2011; 187:434440.
  • 89
    Koziel J, Maciag-Gudowska A, Mikolajczyk T et al. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One 2009; 4:e5210.
  • 90
    Tunbridge AJ, Stevanin TM, Lee M et al. Inhibition of macrophage apoptosis by Neisseria meningitidis requires nitric oxide detoxification mechanisms. Infect Immun 2006; 74:729733.
  • 91
    Steinwede K, Henken S, Bohling J et al. TNF-related apoptosis-inducing ligand (TRAIL) exerts therapeutic efficacy for the treatment of pneumococcal pneumonia in mice. J Exp Med 2012; 209:19371952.
  • 92
    McGrath EE, Lawrie A, Marriott HM et al. Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax 2012; 67:796803.