SEARCH

SEARCH BY CITATION

References

  • 1
    Stender S, Dyerberg J, Bysted A, Leth T, Astrup A. A trans world journey. Atheroscler Suppl 2006; 7:4752.
  • 2
    Micha R, Mozaffarian D. Trans fatty acids: effects on metabolic syndrome, heart disease and diabetes. Nat Rev Endocrinol 2009; 5:335344.
  • 3
    Lopez-Garcia E, Schulze MB, Meigs JB et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005; 135:562566.
  • 4
    Miura S, Tsuzuki Y, Hokari R, Ishii H. Modulation of intestinal immune system by dietary fat intake: relevance to Crohn's disease. J Gastroenterol Hepatol 1998; 13:11831190.
  • 5
    MacLean CH, Mojica WA, Newberry SJ et al. Systematic review of the effects of n-3 fatty acids in inflammatory bowel disease. Am J Clin Nutr 2005; 82:611619.
  • 6
    Matsunaga H, Hokari R, Kurihara C et al. Omega-3 fatty acids exacerbate DSS-induced colitis through decreased adiponectin in colonic subepithelial myofibroblasts. Inflamm Bowel Dis 2008; 14:13481357.
  • 7
    Zapolska-Downar D, Kosmider A, Naruszewicz M. Trans fatty acids induce apoptosis in human endothelial cells. J Physiol Pharmacol 2005; 56:611625.
  • 8
    Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med 2006; 354:16011613.
  • 9
    Kamada N, Hisamatsu T, Okamoto S et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn's disease via IL-23/IFN-gamma axis. J Clin Invest 2008; 118:22692280.
  • 10
    Martins de Lima T, Gorjao R, Hatanaka E et al. Mechanisms by which fatty acids regulate leucocyte function. Clin Sci (Lond) 2007; 113:6577.
  • 11
    Suganami T, Tanimoto-Koyama K, Nishida J et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007; 27:8491.
  • 12
    Fessler MB, Rudel LL, Brown JM. Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol 2009; 20:379385.
  • 13
    Shen W, Durum SK. Synergy of IL-23 and Th17 cytokines: new light on inflammatory bowel disease. Neurochem Res 2010; 35:940946.
  • 14
    Tjonneland A, Overvad K, Bergmann MM et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case–control study within a European prospective cohort study. Gut 2009; 58:16061611.
  • 15
    Craig-Schmidt MC. World-wide consumption of trans fatty acids. Atheroscler Suppl 2006; 7:14.
  • 16
    Jeon SG, Kayama H, Uead Y et al. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLOS Pathog 2012; 8:e1002714.
  • 17
    Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993; 69:238249.
  • 18
    van Greevenbroek MM, Voorhout WF, Erkelens DW, van Meer G, de Bruin TW. Palmitic acid and linoleic acid metabolism in Caco-2 cells: different triglyceride synthesis and lipoprotein secretion. J Lipid Res 1995; 36:1324.
  • 19
    Okada Y, Tsuzuki Y, Miyazaki J et al. Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing. Gut 2006; 55:681688.
  • 20
    Baer DJ, Judd JT, Clevidence BA, Tracy RP. Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr 2004; 79:969973.
  • 21
    Mozaffarian D, Pischon T, Hankinson SE et al. Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 2004; 79:606612.
  • 22
    Mozaffarian D, Rimm EB, King IB, Lawler RL, McDonald GB, Levy WC. Trans fatty acids and systemic inflammation in heart failure. Am J Clin Nutr 2004; 80:15211525.
  • 23
    Laroui H, Ingersoll SA, Liu HC et al. Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLOS One 2012; 7:e32084.
  • 24
    A case–control study of ulcerative colitis in relation to dietary and other factors in Japan. The Epidemiology Group of the Research Committee of Inflammatory Bowel Disease in Japan. J Gastroenterol 1995; 30 (Suppl.):912.
  • 25
    Hart AR, Luben R, Olsen A et al. Diet in the aetiology of ulcerative colitis: a European prospective cohort study. Digestion 2008; 77:5764.
  • 26
    Maconi G, Ardizzone S, Cucino C, Bezzio C, Russo AG, Bianchi Porro G. Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: a case–control study. World J Gastroenterol 2010; 16:42974304.
  • 27
    Enig MG, Atal S, Keeney M, Sampugna J. Isomeric trans fatty acids in the U.S. diet. J Am Coll Nutr 1990; 9:471486.
  • 28
    Heckers H, Melcher FW, Kamenisch W, Henneking K. [Chemically prepared fats and Crohn's disease. A pilot study of the occurrence of trans-fatty acids in the subcutaneous tissue of Crohn's patients in comparison with healthy controls as a parameter of long-term fat intake]. Z Gastroenterol 1988; 26:259264.
  • 29
    Lorenz-Meyer H, Bauer P, Nicolay C et al. Omega-3 fatty acids and low carbohydrate diet for maintenance of remission in Crohn's disease. A randomized controlled multicenter trial. Study Group Members (German Crohn's Disease Study Group). Scand J Gastroenterol 1996; 31:778785.
  • 30
    Matsunaga H, Hokari R, Kurihara C et al. Omega-3 polyunsaturated fatty acids ameliorate the severity of ileitis in the senescence accelerated mice (SAM)P1/Yit mice model. Clin Exp Immunol 2009; 158:325333.
  • 31
    Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am J Clin Nutr 1996; 63:741745.
  • 32
    James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 2000; 71:343S348.
  • 33
    Norris PC, Dennis EA. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proc Natl Acad Sci USA 2012; 109:85178522.
  • 34
    Katz AM. Should trans fatty acids be viewed as membrane-active drugs? Atheroscler Suppl 2006; 7:4142.
  • 35
    Niu SL, Mitchell DC, Litman BJ. Trans fatty acid derived phospholipids show increased membrane cholesterol and reduced receptor activation as compared to their cis analogs. Biochemistry 2005; 44:44584465.
  • 36
    Cassagno N, Palos-Pinto A, Costet P, Breilh D, Darmon M, Berard AM. Low amounts of trans 18:1 fatty acids elevate plasma triacylglycerols but not cholesterol and alter the cellular defence to oxidative stress in mice. Br J Nutr 2005; 94:346352.
  • 37
    Ibrahim A, Natrajan S, Ghafoorunissa R. Dietary trans-fatty acids alter adipocyte plasma membrane fatty acid composition and insulin sensitivity in rats. Metabolism 2005; 54:240246.
  • 38
    Oh DY, Talukdar S, Bae EJ et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010; 142:687698.
  • 39
    Hirasawa A, Tusmaya K, Awaji T et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005; 11:9094.
  • 40
    Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004; 21:467476.
  • 41
    Fujino S, Andoh A, Bamba S et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52:6570.
  • 42
    Ito R, Kita M, Shin-Ya M et al. Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem Biophys Res Commun 2008; 377:1216.
  • 43
    Takedatsu H, Michelsen KS, Wei B et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 2008; 135:552567.
  • 44
    Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28:2939.
  • 45
    Sarra M, Pallone F, Macdonald TT, Monteleone G. IL-23/IL-17 axis in IBD. Inflamm Bowel Dis 2010; 16:18081813.
  • 46
    Sakai T, Ire AV, Matoba T, Yamamoto S. Dietary trans fatty acids suppress the development of spontaneous atopic-like dermatitis in NC/Nga mice. J Nutr Sci Vitaminol (Tokyo) 2009; 55:412416.
  • 47
    Langrish CL, Chen Y, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201:233240.
  • 48
    Zhou L, Ivanov II, Spolski R et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8:967974.
  • 49
    Han SN, Leka LS, Lichtenstein AH, Ausman LM, Schaefer EJ, Meydani SN. Effect of hydrogenated and saturated, relative to polyunsaturated, fat on immune and inflammatory responses of adults with moderate hypercholesterolemia. J Lipid Res 2002; 43:445452.
  • 50
    Skuladottir IH, Petursdottir DH, Hardardottir I. The effects of omega-3 polyunsaturated fatty acids on TNF-alpha and IL-10 secretion by murine peritoneal cells in vitro. Lipids 2007; 42:699706.
  • 51
    Walloschke B, Fuhrmann H, Schumann J. Enrichment of RAW264.7 macrophages with essential 18-carbon fatty acids affects both respiratory burst and production of immune modulating cytokines. J Nutr Biochem 2010; 21:556560.
  • 52
    Bassett CM, Edel AL, Patenaude AF et al. Dietary vaccenic acid has antiatherogenic effects in LDLr2/2 mice. J Nutr 2010; 140: 1824.