• BCG;
  • bladder cancer;
  • IL-10;
  • immunotherapy


Effective treatment of bladder cancer with bacillus Calmette–Guérin (BCG) depends on the induction of a T helper type (Th) 1 immune response. Interleukin (IL)-10 down-regulates the Th1 response and is associated with BCG failure. In this study, we investigated whether blocking IL-10 signalling could enhance the BCG-induced Th1 response and anti-tumour immunity in a murine orthotopic tumour model. Treatment with BCG and anti-IL-10 receptor 1 monoclonal antibody (anti-IL-10R1 mAb) increased the interferon (IFN)-γ to IL-10 ratio in both splenocyte cultures and urine. Mice bearing luciferase-expressing MB49 (MB49-Luc) tumours were treated and followed for tumour growth by bioluminescent imaging, bladder weight and histology. Mice treated with phosphate-buffered saline (PBS) (group 1), BCG plus control immunoglobulin (Ig)G1 (group 2) or BCG plus anti-IL-10R1 mAb (group 3) showed 0, 6 and 22% tumour regression, respectively. The mean bladder weight of group 3 mice was substantially lower than those of groups 1 and 2 mice. Remarkably, 36% of group 1 and 53% of group 2 mice but no group 3 mice developed lung metastasis (P = 0·02). To investigate the mechanisms underlying the effect of combination therapy, splenocytes were stimulated with S12 peptide (serine mutation at codon 12 of the K-ras oncogene) known to be expressed in MB49-Luc cells. Induction of ras mutation-specific IFN-γ and cytotoxicity was observed in mice treated with combination therapy. These observations indicate that BCG, in combination with anti-IL-10R1 mAb, induces enhanced anti-tumour immunity that is protective against lung metastasis. Anti-IL-10R1 mAb demonstrates systemic effects and may prove useful in clinical practice for treating bladder cancer in high-risk patients.