SEARCH

SEARCH BY CITATION

References

  • 1
    Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci 2011: 366 (1568): 12191233.
  • 2
    Stewart DN, Lango J, Nambiar KP et al. Carbon turnover in the water-soluble protein of the adult human lens. Mol Vis 2013: 19: 463475.
  • 3
    Donaldson PJ, Musil LS, Mathias RT. Point: a critical appraisal of the lens circulation model—an experimental paradigm for understanding the maintenance of lens transparency? Invest Ophthalmol Vis Sci 2010: 51 (5): 23032306.
  • 4
    Beebe DC, Truscott RJ. Counterpoint: the lens fluid circulation model—a critical appraisal. Invest Ophthalmol Vis Sci 2010: 51 (5): 23062310 discussion 10–2.
  • 5
    Hejtmancik JF, Kaiser-Kupfer MI, Piatigorsky J. Molecular biology and inherited disorders of the eye lens. In: Scriver CR, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B, eds. The metabolic and molecular basis of inherited disease, Vol. 8. New York: McGraw Hill, 2001: 60336062.
  • 6
    Graw J. Genetics of crystallins: cataract and beyond. Exp Eye Res 2009: 88 (2): 173189.
  • 7
    Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature 1983: 302: 415417.
  • 8
    Benedek GB. Theory of transparency of the eye. Appl Opt 1971: 10: 459473.
  • 9
    Hejtmancik JF, Smaoui N. Molecular genetics of cataract. In: Wissinger B, Kohl S, Langenbeck U, eds. Genetics in ophthalmology. Basel: S.Karger, 2003: 6782.
  • 10
    Haargaard B, Wohlfahrt J, Fledelius HC, Rosenberg T, Melbye M. Incidence and cumulative risk of childhood cataract in a cohort of 2.6 million Danish children. Invest Ophthalmol Vis Sci 2004: 45 (5): 13161320.
  • 11
    Francois J. Genetics of cataract. Ophthalmologica 1982: 184: 6171.
  • 12
    Merin S. Inherited Cataracts. In: Merin S, ed. Inherited eye diseases. New York: Marcel Dekker, Inc., 1991: 86120.
  • 13
    Haargaard B, Wohlfahrt J, Rosenberg T, Fledelius HC, Melbye M. Risk factors for idiopathic congenital/infantile cataract. Invest Ophthalmol Vis Sci 2005: 46 (9): 30673073.
  • 14
    Semina EV, Ferrell RE, Mintz-Hittner HA et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 1998: 19 (2): 167170.
  • 15
    Hejtmancik JF, Shiels A. Genetics of congenital cataract. In: Dartt DA, Besharse J, Dana R, eds. Encyclopedia of the eye. New York: Elsevier, 2010.
  • 16
    Merin S, Crawford JS. The etiology of congenital cataracts. A survey of 386 cases. Can J Ophthalmol 1971: 6: 178182.
  • 17
    Truscott RJ. Age-related nuclear cataract-oxidation is the key. Exp Eye Res 2005: 80 (5): 709725.
  • 18
    Machan CM, Hrynchak PK, Irving EL. Age-related cataract is associated with type 2 diabetes and statin use. Optom Vis Sci 2012: 89 (8): 11651171.
  • 19
    Bunce GE, Kinoshita J, Horwitz J. Nutritional factors in cataract. Annu Rev Nutr 1990: 10: 233254.
  • 20
    Sharma KK, Santhoshkumar P. Lens aging: effects of crystallins. Biochim Biophys Acta 2009: 1790 (10): 10951108.
  • 21
    Ottonello S, Foroni C, Carta A, Petrucco S, Maraini G. Oxidative stress and age-related cataract. Ophthalmologica 2000: 214 (1): 7885.
  • 22
    Wistow G. Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 1993: 18: 301306.
  • 23
    Rao PV, Huang QL, Horwitz J, Zigler JS Jr. Evidence that alpha-crystallin prevents non-specific protein aggregation in the intact eye lens. Biochim Biophys Acta 1995: 1245 (3): 439447.
  • 24
    Datiles MB III, Ansari RR, Suh KI et al. Clinical detection of precataractous lens protein changes using dynamic light scattering. Arch Ophthalmol 2008: 126 (12): 16871693.
  • 25
    Foster PJ, Wong TY, Machin D, Johnson GJ, Seah SK. Risk factors for nuclear, cortical and posterior subcapsular cataracts in the Chinese population of Singapore: the Tanjong Pagar Survey. Br J Ophthalmol 2003: 87 (9): 11121120.
  • 26
    West SK, Valmadrid CT. Epidemiology of risk factors for age-related cataract. Surv Ophthalmol 1995: 39 (4): 323334.
  • 27
    Williams PT. Walking and running are associated with similar reductions in cataract risk. Med Sci Sports Exerc 2012. Epub ahead of print.
  • 28
    McCarty CA, Taylor HR. The genetics of cataract. Invest Ophthalmol Vis Sci 2001: 42 (8): 16771678.
  • 29
    Somasundaram T, Bhat SP. Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J Biol Chem 2004: 279 (43): 4449744503.
  • 30
    Lachke SA, Alkuraya FS, Kneeland SC et al. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science 2011: 331 (6024): 15711576.
  • 31
    Pande A, Pande J, Asherie N et al. Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci USA 2001: 98 (11): 61166120.
  • 32
    Pande A, Pande J, Asherie N et al. Molecular basis of a progressive juvenile-onset hereditary cataract. Proc Natl Acad Sci USA 2000: 97 (5): 19931998.
  • 33
    Iyengar SK, Klein BE, Klein R et al. Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proc Natl Acad Sci USA 2004: 101 (40): 1448514490.
  • 34
    Skalka HW, Prchal JT. Presenile cataract formation and decreased activity of galactosemic enzymes. Arch Ophthalmol 1980: 98 (2): 269273.
  • 35
    Okano Y, Asada M, Fujimoto A et al. A genetic factor for age-related cataract: identification and characterization of a novel galactokinase variant, “Osaka,” in Asians. Am J Hum Genet 2001: 68 (4): 10361042.
  • 36
    Maraini G, Hejtmancik JF, Shiels A et al. Galactokinase gene mutations and age-related cataract. Lack of association in an Italian population. Mol Vis 2003: 9: 397400.
  • 37
    Stevens RE, Datiles MB, Srivastava SK, Ansari NH, Maumenee AE, Stark WJ. Idiopathic presenile cataract formation and galactosaemia. Br J Ophthalmol 1989: 73 (1): 4851.
  • 38
    Lee SC, Wang Y, Ko GT et al. Risk factors for cataract in Chinese patients with type 2 diabetes: evidence for the influence of the aldose reductase gene. Clin Genet 2001: 59 (5): 356359.
  • 39
    Shiels A, Bennett TM, Knopf HL et al. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis 2008: 14: 20422055.
  • 40
    Zhang T, Hua R, Xiao W et al. Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum Mutat 2009: 30 (5): E603E611.
  • 41
    Kaul H, Riazuddin SA, Shahid M et al. Autosomal recessive congenital cataract linked to EPHA2 in a consanguineous Pakistani family. Mol Vis 2010: 16: 511517.
  • 42
    Jun G, Guo H, Klein BE et al. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet 2009: 5 (7): e1000584.
  • 43
    Sundaresan P, Ravindran RD, Vashist P et al. EPHA2 polymorphisms and age-related cataract in India. PLoS One 2012: 7 (3): e33001.
  • 44
    Tan W, Hou S, Jiang Z, Hu Z, Yang P, Ye J. Association of EPHA2 polymorphisms and age-related cortical cataract in a Han Chinese population. Mol Vis 2011: 17: 15531558.
  • 45
    Sun L, Xi B, Yu L et al. Association of glutathione S-transferases polymorphisms (GSTM1 and GSTT1) with senile cataract: a meta-analysis. Invest Ophthalmol Vis Sci 2010: 51 (12): 63816386.