Get access

An Efficient Algorithm for Determining an Aesthetic Shape Connecting Unorganized 2D Points



We present anefficient algorithm for determining an aesthetically pleasing shape boundary connecting all the points in a given unorganized set of 2D points, with no other information than point coordinates. By posing shape construction as a minimisation problem which follows the Gestalt laws, our desired shape math formula is non-intersecting, interpolates all points and minimizes a criterion related to these laws. The basis for our algorithm is an initial graph, an extension of the Euclidean minimum spanning tree but with no leaf nodes, called as the minimum boundary complex math formula. math formula and math formula can be expressed similarly by parametrizing a topological constraint. A close approximation of math formula, termed math formula can be computed fast using a greedy algorithm. math formula is then transformed into a closed interpolating boundary math formula in two steps to satisfy math formula’s topological and minimization requirements. Computing math formula exactly is an NP (Non-Polynomial)-hard problem, whereas math formula is computed in linearithmic time. We present many examples showing considerable improvement over previous techniques, especially for shapes with sharp corners. Source code is available online.