Get access

PHOG: Photometric and geometric functions for textured shape retrieval



In this paper we target the problem of textured 3D object retrieval. As a first contribution, we show how to include photometric information in the persistence homology setting, also proposing a novel theoretical result about multidimensional persistence spaces. As a second contribution, we introduce a generalization of the integral geodesic distance which fuses shape and color properties. Finally, we adopt a purely geometric description based on the selection of geometric functions that are mutually independent. The photometric, hybrid and geometric descriptions are combined into a signature, whose performance is tested on a benchmark dataset.