SEARCH

SEARCH BY CITATION

References

  • [ADS06]Augsdörfer U. H., Dodgson N. A., Sabin M. A.: Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices. Computer Graphics Forum 25, 3 (2006), 263272.
  • [BLZ00]Biermann H., Levin A., Zorin D.: Piecewise smooth subdivision surfaces with normal control. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), SIGGRAPH'00, pp. 113120.
  • [BMZB02]Biermann H., Martin I. M., Zorin D., Bernardini F.: Sharp features on multiresolution subdivision surfaces. Graphical Models 64, 2 (March 2002), 6177.
  • [BS88]Ball A., Storry D.: Conditions for tangent plane continuity over recursively generated B-spline surfaces. ACM Transactions on Graphics 7, 2 (1988), 83108.
  • [CADS09]Cashman T. J., Augsdörfer U. H., Dodgson N. A., Sabin M. A.: NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. In Proceedings of the ACM SIGGRAPH 2009 Papers (2009), pp. 46:146:9.
  • [Cas10]Cashman T. J.: NURBS-Compatible Subdivision Surfaces. Tech. Rep. UCAM-CL-TR-773, PhD thesis, University of Cambridge, Computer Laboratory, March 2010.
  • [CC78]Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350355.
  • [CDS09]Cashman T. J., Dodgson N. A., Sabin M. A.: A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines. Computer Aided Geometric Design 26, 1 (2009), 94104.
  • [DCL*08]Deng J., Chen F., Li X., Hu C., Tong W., Yang Z., Feng Y.: Polynomial splines over hierarchical T-meshes. Graphical Models 70, 4 (2008), 7686.
  • [DKT98]DeRose T., Kass M., Truong T.: Subdivision surfaces in character animation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (1998), ACM SIGGRAPH '98, pp. 8594.
  • [DLP13]Dokken T., Lyche T., Pettersen K. F.: Polynomial splines over locally refined box-partitions. Computer Aided Geometric Design 30, 3 (2013), 331356.
  • [DS78]Doo D., Sabin M.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 6 (1978), 356360.
  • [FB88]Forsey D. R., Bartels R. H.: Hierarchical B-spline refinement. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (1988), ACM SIGGRAPH '88, pp. 205212.
  • [Fin08]Finnigan G. T.: Arbitrary Degree T-Splines. Master's thesis, Brigham Young University, USA, 2008.
  • [GJS12]Giannelli C., Jüttler B., Speleers H.: THB-splines: the truncated basis for hierarchical splines. Computer Aided Geometric Design 29, 7 (Oct. 2012), 485498.
  • [Gre67]Greville T.: On the normalization of the B-splines and the location of the nodes for the case of unequally spaced knots. In Inequalities. O. Shisha (Ed.). Academic Press, New York, 1967.
  • [HDD*94]Hoppe H., DeRose T., Duchamp T., Halstead M., Jin H., McDonald J., Schweitzer J., Stuetzle W.: Piecewise smooth surface reconstruction. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (1994), SIGGRAPH '94, pp. 295302.
  • [HW11]Huang Z., Wang G.: Non-uniform recursive Doo-Sabin surfaces. Computer-Aided Design 43, 11 (2011), 15271533.
  • [KS99]Khodakovsky A., Schröder P.: Fine level feature editing for subdivision surfaces. In Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications (SMA '99) (1999), pp. 203211.
  • [KSD13]Kosinka J., Sabin M. A., Dodgson N. A.: Cubic subdivision schemes with double knots. Computer Aided Geometric Design 30, 1 (2013), 4557.
  • [LD09]Lavoué G., Dupont F.: Semi-sharp subdivision surface fitting based on feature lines approximation. Computers and Graphics 33, 2 (2009), 151161.
  • [MFR*10]Müller K., Fünfzig C., Reusche L., Hansford D., Farin G., Hagen H.: DINUS: Double insertion, nonuniform, stationary subdivision surfaces. ACM Transactions on Graphics 29 (July 2010), 25:125:21.
  • [MRF06]Müller K., Reusche L., Fellner D.: Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Transactions on Graphics 25 (April 2006), 268292.
  • [NLG12]Nießner M., Loop C. T., Greiner G.: Efficient evaluation of semi-smooth creases in Catmull-Clark subdivision surfaces. In Eurographics (Short Papers) (2012), pp. 4144.
  • [NLMD12]Nießner M., Loop C., Meyer M., Derose T.: Feature-adaptive GPU rendering of catmull-clark subdivision surfaces. ACM Transactions on Graphics 31, 1 (Feb. 2012), 6:16:11.
  • [PR08]Peters J., Reif U.: Subdivision Surfaces. Springer Publishing Company, Incorporated, Berlin, 2008. ISBN: 978-3-540-76405-2.
  • [Sta98]Stam J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive techniques (1998), ACM SIGGRAPH '98, pp. 395404.
  • [SZBN03]Sederberg T. W., Zheng J., Bakenov A., Nasri A.: T-splines and T-NURCCs. ACM Transactions on Graphics 22 (2003), 477484.
  • [SZSS98]Sederberg T. W., Zheng J., Sewell D., Sabin M.: Non-uniform recursive subdivision surfaces. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (1998), ACM SIGGRAPH '98, pp. 387394.
  • [VGJS11]Vuong A.-V., Giannelli C., Jüttler B., Simeon B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 200, 49–52 (2011), 35543567.
  • [ZS01]Zorin D., Schröder P.: A unified framework for primal/dual quadrilateral subdivision schemes. Computer Aided Geometric Design 18, 5 (2001), 429454.