SEARCH

SEARCH BY CITATION

References

  • [ABD10] Adams A., Baek J., Davis M. A.: Fast high-dimensional filtering using the permutohedral lattice. Computer Graphics Forum 29, 2 (2010), 753762.
  • [AEVZ00] Agrell E., Eriksson T., Vardy A., Zeger K.: Closest point search in lattices. IEEE Transactions on Information Theory 48 (2000), 22012214.
  • [CS10] Conway J., Sloane N.: Sphere Packings, Lattices and Groups. Grundlehren Der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2010.
  • [Cse05] Csebfalvi B.: Prefiltered Gaussian reconstruction for high-quality rendering of volumetric data sampled on a body-centered cubic grid. In IEEE Visualization (Los Alamitos, CA, USA, 2005), IEEE Computer Society, p. 40.
  • [CVFH08] Condat L., Ville D. V. D., Forster-Heinlein B.: Reversible, fast, and high-quality grid conversions. IEEE Transactions on Image Processing 17, 5 (2008), 679693.
  • [Dam09] Dammertz S.: Rank-1 Lattices in Computer Graphics. PhD thesis, Ulm University, 2009.
  • [DDK09] Dammertz S., Dammertz H., Keller A.: Efficient search for low-dimensional rank-1 lattices with applications in graphics. In Proceedings of the Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, Berlin, 2009, pp. 217287.
  • [DDKL09] Dammertz S., Dammertz H., Keller A., Lensch H. P. A.: Textures on rank-1 lattices. Computer Graphics Forum 28, 7 (2009), 19451954.
  • [DK08] Dammertz S., Keller A.: Image synthesis by rank-1 lattices. In Proceedings of the Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Berlin, 2008, 217236.
  • [EVDVM08] Entezari A., Van De Ville D., Moller T.: Practical box splines for reconstruction on the body centered cubic lattice. IEEE Transactions on Visualization and Computer Graphics 14, 2 (March–April 2008), 313328.
  • [GBG11] Garanzha K., Bely A., Galaktionov V.: Simple geometry compression for ray tracing on GPU. In Conference Proceedings of 21st International Conference on Computer Graphics and Vision GraphiCon-2011 (2011), pp. 107110.
  • [GG91] Gersho A., Gray R. M.: Vector Quantization and Signal Compression. Kluwer Academic Publishers, Norwell, MA, 1991.
  • [HHLL00] Hickernell F. J., Hong H. S., LÉcuyer P., Lemieux C.: Extensible lattice sequences for quasi-Monte Carlo quadrat. SIAM Journal on Scientific Computing 22, 3 (March 2000), 11171138.
  • [HHW81] Hua L., Hua L., Wang Y.: Applications of Number Theory to Numerical Analysis. Springer-Verlag, Berlin, 1981.
  • [HS07] Hanrot G., Stehlé D.: Improved Analysis of Kannan's Shortest Lattice Vector Algorithm. Tech. Rep. No 6186, Institut National de Recherche en Informatique et en Automatique, 2007.
  • [Knu73] Knuth D. E.: The Art of Computer Programming, Volume I: Fundamental Algorithms (2nd edition). Addison-Wesley, New York, 1973.
  • [Kor59] Korobov N. M.: The approximate computation of multiple integrals. Doklady Akademii Nauk SSSR 124 (1959), 12071210 (in Russian).
  • [LLM06] Liu Y.-K., Lyubashevsky V., Micciancio D.: On bounded distance decoding for general lattices. In APPROX-RANDOM (2006), Vol. 4110 of Lecture Notes in Computer Science, Springer-Verleg, Berlin, pp. 450461.
  • [LLWQ13] Li B., Li X., Wang K., Qin H.: Surface mesh to volumetric spline conversion with generalized polycubes. IEEE Transactions on Visualization and Computer Graphics 19, 9 (2013), 15391551.
  • [LQ11] Li B., Qin H.: Feature-aware reconstruction of volume data via trivariate splines. In Pacific Conference on Computer Graphics and Applications—Short Papers. B.-Y. Chen, J. Kautz, T.-Y. Lee, M. C. Lin (Eds.). Eurographics Association, Genf, 2011, pp. 4954.
  • [MS05] Middleton L., Sivaswamy J.: Hexagonal Image Processing: A Practical Approach. Advances in Pattern Recognition. Springer-Verlag, New York, 2005.
  • [New72] Newman M.: Integral Matrices. Pure and Applied Mathematics. Academic Press, Waltham, MA, 1972.
  • [Nie92] Niederreiter H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
  • [NM02] Neophytou N., Mueller K.: Space-time points: 4d splatting on efficient grids. In Proceedings of the 2002 IEEE Symposium on Volume Visualization and Graphics VVS '02. IEEE Press, Piscataway, NJ, 2002, pp. 97106.
  • [NS04] Nguyen P. Q., Stehlé D.: Low-dimensional lattice basis reduction revisited. In Proceedings of the 6th International Algorithmic Number Theory Symposium (ANTS-VI) (2004), Vol. 3076 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 338357.
  • [Rot97] Rote G.: Finding a shortest vector in a two-dimensional lattice modulo M. Theoretical Computer Science 172 (1997), 303308.
  • [RSK10] Rump M., Sarlette R., Klein R.: Groundtruth data for multispectral bidirectional texture functions. In CGIV 2010 (June 2010), Society for Imaging Science and Technology, Washington, D.C., pp. 326330.
  • [SE10] Segovia B., Ernst M.: Memory efficient ray tracing with hierarchical mesh quantization. In Graphics Interface 2010 (2010), pp. 153160.
  • [VVPL02] Van De Ville D., Van de Walle R., Philips W., Lemahieu I.: Image resampling between orthogonal and hexagonal lattices. In Proceedings of the International Conference on Image Processing 2002 3, (2002), III–389III–392.