SEARCH

SEARCH BY CITATION

References

  • Anderson, G.L., Kenney, S.J., Millner, P.D., Beuchat, L.R., and Williams, P.L. (2006) Shedding of foodborne pathogens by Caenorhabditis elegans in compost-amended and unamended soil. Food Microbiol 23: 146153.
  • Anyanful, A., Dolan-Livengood, J.M., Lewis, T., Sheth, S., Dezalia, M.N., Sherman, M.A., et al. (2005) Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Mol Microbiol 57: 9881007.
  • Aroian, R., and van der Goot, F.G. (2007) Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 10: 5761.
  • Bellier, A., Chen, C.S., Kao, C.Y., Cinar, H.N., and Aroian, R.V. (2009) Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathog 5: e1000689.
  • Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 7194.
  • Brigotti, M., Carnicelli, D., and Vara, A.G. (2004) Shiga toxin 1 acting on DNA in vitro is a heat-stable enzyme not requiring proteolytic activation. Biochimie 86: 305309.
  • Chase-Topping, M., Gally, D., Low, C., Matthews, L., and Woolhouse, M. (2008) Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 6: 904912.
  • Chen, C.S., Bellier, A., Kao, C.Y., Yang, Y.L., Chen, H.D., Los, F.C.O., and Aroian, R.V. (2010) WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans. PLoS ONE 5: e9494.
  • Cherla, R.P., Lee, S.Y., Mulder, R.A., Lee, M.S., and Tesh, V.L. (2009) Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infect Immun 77: 39193931.
  • Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 66406645.
  • Dunbar, T.L., Yan, Z., Balla, K.M., Smelkinson, M.G., and Troemel, E.R. (2012) C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe 11: 375386.
  • Ewbank, J.J., and Zugasti, O. (2011) C. elegans: model host and tool for antimicrobial drug discovery. Dis Model Mech 4: 300304.
  • Foster, G.H., and Tesh, V.L. (2002) Shiga toxin 1-induced activation of c-jun NH2-terminal kinase and p38 in the human monocytic cell line THP-1: possible involvement in the production of TNF-alpha. J Leukoc Biol 71: 107114.
  • Golan, L., Gonen, E., Yagel, S., Rosenshine, I., and Shpigel, N.Y. (2011) Enterohemorrhagic Escherichia coli induce attaching and effacing lesions and hemorrhagic colitis in human and bovine intestinal xenograft models. Dis Model Mech 4: 8694.
  • Griener, T.P., Mulvey, G.L., Marcato, P., and Armstrong, G.D. (2007) Differential binding of Shiga toxin 2 to human and murine neutrophils. J Med Microbiol 56: 14231430.
  • Griffitts, J.S., Haslam, S.M., Yang, T.L., Garczynski, S.F., Mulloy, B., Morris, H., et al. (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922925.
  • Huffman, D.L., Abrami, L., Sasik, R., Corbeil, J., van der Goot, F.G., and Aroian, R.V. (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci USA 101: 1099511000.
  • Ideo, H., Fukushima, K., Gengyo-Ando, K., Mitani, S., Dejima, K., Nomura, K., and Yamashita, K. (2009) A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection. J Biol Chem 284: 2649326501.
  • Irazoqui, J.E., Urbach, J.M., and Ausubel, F.M. (2010a) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10: 4758.
  • Irazoqui, J.E., Troemel, E.R., Feinbaum, R.L., Luhachack, L.G., Cezairliyan, B.O., and Ausubel, F.M. (2010b) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog 6: e1000982.
  • Johannes, L., and Romer, W. (2010) Shiga toxins – from cell biology to biomedical applications. Nat Rev Microbiol 8: 105116.
  • Kao, C.Y., Los, F.C., Huffman, D.L., Wachi, S., Kloft, N., Husmann, M., et al. (2011) Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog 7: e1001314.
  • Kenney, S.J., Anderson, G.L., Williams, P.L., Millner, P.D., and Beuchat, L.R. (2005) Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission to progeny and uninfected nematodes. Int J Food Microbiol 101: 227236.
  • Kim, D.H., Feinbaum, R., Alloing, G., Emerson, F.E., Garsin, D.A., Inoue, H., et al. (2002) A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297: 623626.
  • Kudva, I.T., Hatfield, P.G., and Hovde, C.J. (1997) Characterization of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli serotypes isolated from sheep. J Clin Microbiol 35: 892899.
  • Lee, J., Kang, J., Shin, D., and Yu, J.R. (2009) Lats kinase is involved in the intestinal apical membrane integrity in the nematode Caenorhabditis elegans. Development 136: 27052715.
  • Lee, Y., Kim, Y., Yeom, S., Kim, S., Park, S., Jeon, C.O., and Park, W. (2008) The role of disulfide bond isomerase A (DsbA) of Escherichia coli O157:H7 in biofilm formation and virulence. FEMS Microbiol Lett 278: 213222.
  • Lim, J.Y., Yoon, J., and Hovde, C.J. (2010) A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20: 514.
  • Louise, C.B., and Obrig, T.G. (1995) Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J Infect Dis 172: 13971401.
  • McEwan, D.L., Kirienko, N.V., and Ausubel, F.M. (2012) Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host Microbe 11: 364374.
  • McGhee, J.D. (2007) The C. elegans intestine. WormBook, March 27: 136.
  • Melo, J.A., and Ruvkun, G. (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149: 452466.
  • Mohawk, K.L., and O'Brien, A.D. (2011) Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. J Biomed Biotechnol 2011: 258185.
  • Mukhopadhyay, S., and Linstedt, A.D. (2012) Manganese blocks intracellular trafficking of Shiga toxin and protects against Shiga toxicosis. Science 335: 332335.
  • Muniesa, M., Serra-Moreno, R., Acosta, S., Hernalsteens, J.P., and Jofre, J. (2006) Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol 7: 31.
  • Panda, A., Tatarov, I., Melton-Celsa, A.R., Kolappaswamy, K., Kriel, E.H., Petkov, D., et al. (2010) Escherichia coli O157:H7 infection in Dutch belted and New Zealand white rabbits. Comp Med 60: 3137.
  • Pennington, H. (2010) Escherichia coli O157. Lancet 376: 14281435.
  • Rasooly, R., and Do, P.M. (2010) Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization. Int J Food Microbiol 136: 290294.
  • Renter, D.G., Sargeant, J.M., Oberst, R.D., and Samadpour, M. (2003) Diversity, frequency, and persistence of Escherichia coli O157 strains from range cattle environments. Appl Environ Microbiol 69: 542547.
  • Sato, K., Sato, M., Saegusa, K., Sato, K., Hara, T., and Harada, A. (2011) Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell 22: 25792587.
  • Schuller, S. (2011) Shiga toxin interaction with human intestinal epithelium. Toxins (Basel) 3: 626639.
  • Shimizu, T., Ohta, Y., and Noda, M. (2009) Shiga toxin 2 is specifically released from bacterial cells by two different mechanisms. Infect Immun 77: 28132823.
  • Smith, D.C., Lord, J.M., Roberts, L.A., and Johannes, L. (2004) Glycosphingolipids as toxin receptors. Semin Cell Dev Biol 15: 397408.
  • Smith, M.J., Carvalho, H.M., Melton-Celsa, A.R., and O'Brien, A.D. (2006) The 13C4 monoclonal antibody that neutralizes Shiga toxin Type 1 (Stx1) recognizes three regions on the Stx1 B subunit and prevents Stx1 from binding to its eukaryotic receptor globotriaosylceramide. Infect Immun 74: 69926998.
  • Smith, W.E., Kane, A.V., Campbell, S.T., Acheson, D.W., Cochran, B.H., and Thorpe, C.M. (2003) Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect Immun 71: 14971504.
  • Stechmann, B., Bai, S.K., Gobbo, E., Lopez, R., Merer, G., Pinchard, S., et al. (2010) Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141: 231242.
  • Strockbine, N.A., Marques, L.R., Newland, J.W., Smith, H.W., Holmes, R.K., and O'Brien, A.D. (1986) Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun 53: 135140.
  • Tarr, P.I., Gordon, C.A., and Chandler, W.L. (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 10731086.
  • Tesh, V.L. (2012) The induction of apoptosis by Shiga toxins and ricin. Curr Top Microbiol Immunol 357: 137178.
  • Troemel, E.R., Chu, S.W., Reinke, V., Lee, S.S., Ausubel, F.M., and Kim, D.H. (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2: e183.
  • Valdivia, R.H., and Falkow, S. (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22: 367378.
  • Waddell, T., Head, S., Petric, M., Cohen, A., and Lingwood, C. (1988) Globotriosyl ceramide is specifically recognized by the Escherichia coli verocytotoxin-2. Biochem Biophys Res Commun 152: 674679.
  • Yu, S.L., Ko, K.L., Chen, C.S., Chang, Y.C., and Syu, W.J. (2000) Characterization of the distal tail fiber locus and determination of the receptor for phage AR1, which specifically infects Escherichia coli O157:H7. J Bacteriol 182: 59625968.
  • Zhang, Y., Lu, H., and Bargmann, C.I. (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438: 179184.