SEARCH

SEARCH BY CITATION

References

  • Backert, S., and Selbach, M. (2005) Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol 13: 476484.
  • Backert, S., Tegtmeyer, N., and Selbach, M. (2010) The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis. Helicobacter 15: 163176.
  • Basso, D., Zambon, C.F., Letley, D.P., Stranges, A., Marchet, A., Rhead, J.L., et al. (2008) Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 135: 9199.
  • Botham, C.M., Wandler, A.M., and Guillemin, K. (2008) A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathog 4: e1000064.
  • Campellone, K.G., Giese, A., Tipper, D.J., and Leong, J.M. (2002) A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol 43: 12271241.
  • Clifton, D.R., Fields, K.A., Grieshaber, S.S., Dooley, C.A., Fischer, E.R., Mead, D.J., et al. (2004) A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci USA 101: 1016610171.
  • Clifton, D.R., Dooley, C.A., Grieshaber, S.S., Carabeo, R.A., Fields, K.A., and Hackstadt, T. (2005) Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin. Infect Immun 73: 38603868.
  • Covacci, A., and Rappuoli, R. (2000) Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cell. J Exp Med 191: 587592.
  • Deng, K., Mock, J.R., Greenberg, S., van Oers, N.S.C., and Hansen, E.J. (2008) Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases. Infect Immun 76: 46924702.
  • Dunker, A.K., Silman, I., Uversky, V.N., and Sussman, J.L. (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18: 756764.
  • Dyson, H.J., and Wright, P.E. (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6: 197208.
  • Furuta, Y., Yahara, K., Hatakeyama, M., and Kobayashi, I. (2011) Evolution of cagA oncogene of Helicobacter pylori through recombination. PLoS ONE 6: e23499.
  • Grangeasse, C., Cozzone, A., Deutscher, J., and Mijakovic, I. (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32: 8694.
  • Gruenheid, S., DeVinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G.D., et al. (2001) Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3: 856859.
  • Hatakeyama, M. (2003) Helicobacter pylori CagA – a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect 5: 143150.
  • Hatakeyama, M. (2004) Oncogenic mechanisms of Helicobacter pylori CagA protein. Nat Rev Cancer 4: 688694.
  • Hayashi, T., Senda, M., Morohashi, H., Higashi, H., Horio, M., Kashiba, Y., et al. (2012) Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe 12: 2033.
  • Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and Hatakeyama, M. (2002a) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295: 683686.
  • Higashi, H., Tsutsumi, R., Fujita, A., Yamazaki, S., Asaka, M., Azuma, T., and Hatakeyama, M. (2002b) Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA 99: 1442814433.
  • Ijdo, J.W., Carlson, A.C., and Kennedy, E.L. (2007) Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol 9: 12841296.
  • Kenny, B. (1999) Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecules is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31: 12291241.
  • Kenny, B., DeVinney, R., Stein, M., Reinscheid, D.J., Frey, E.A., and Finlay, B.B. (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511520.
  • Lane, B.J., Mutchler, C., Al Khodor, S., Grieshaber, S.S., and Carabeo, R.A. (2008) Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 4: e1000014.
  • Lin, M., den Dulk-Ras, A., Hooykaas, P.J.J., and Rikihisa, Y. (2007) Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol 9: 26442657.
  • Lutter, E.I., Bonner, C., Holland, M.J., Suchland, R.J., Stamm, W.E., Jewett, T.J., et al. (2010) Phylogenetic analysis of Chlamydia trachomatis Tarp and correlation with clinical phenotype. Infect Immun 78: 36783688.
  • Mehlitz, A., Banhart, S., Hess, S., Selbach, M., and Meyer, T.F. (2008) Complex kinase requirements for Chlamydia trachomatis Tarp phosphorylation. FEMS Microbiol Lett 289: 233240.
  • Mehlitz, A., Bänhart, S., Maurer, A.P., Kaushansky, A., Gordus, A.G., Zielecki, J., et al. (2010) Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1. J Cell Biol 190: 143157.
  • Miura, M., Ohnishi, N., Tanaka, S., Yanagiya, K., and Hatakeyama, M. (2009) Differential oncogenic potential of geographically distinct Helicobacter pylori CagA isoforms in mice. Int J Cancer 125: 24972504.
  • Mock, J.R., Vakevainen, M., Deng, K., Latimer, J.L., Young, J.A., van Oers, N.S., et al. (2005) Haemophilus ducreyi targets Src family protein tyrosine kinases to inhibit phagocytic signaling. Infect Immun 73: 78087816.
  • Naito, M., Yamazaki, T., Tsutsumi, R., Higashi, H., Onoe, K., Yamazaki, S., et al. (2006) Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 130: 11811190.
  • Nesic, D., Miller, M.C., Quinkert, Z.T., Stein, M., Chait, B.T., and Stebbins, C.E. (2010) Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol 17: 130132.
  • Ohnishi, N., Yuasa, H., Tanaka, S., Sawa, H., Miura, M., Matsui, A., et al. (2008) Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA 105: 10031008.
  • Poppe, M., Feller, S.M., Römer, G., and Wessler, S. (2007) Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26: 34623472.
  • Race, P.R., Solovyova, A.S., and Banfield, M.J. (2007) Conformation of the EPEC Tir protein in solution: investigating the impact of serine phosphorylation at positions 434/463. Biophys J 93: 586596.
  • Rosenshine, I., Donnenberg, M.S., Kaper, J.B., and Finlay, B.B. (1992) Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J 11: 35513560.
  • Safari, F., Murata-Kamiya, N., Saito, Y., and Hatakeyama, M. (2011) Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors. Proc Natl Acad Sci USA 108: 1493814943.
  • Schulein, R., Guye, P., Rhomberg, T.A., Schmid, M.C., Schröder, G., Vergunst, A.C., et al. (2005) A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci USA 102: 856861.
  • Selbach, M., Paul, F.E., Brandt, S., Guye, P., Daumke, O., Backert, S., et al. (2009) Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host Microbe 5: 397403.
  • Sigalov, A.B. (2010) Protein intrinsic disorder and oligomericity in cell signaling. Mol Biosyst 6: 451461.
  • Simister, P.C., and Feller, S.M. (2012) Order and disorder in large multi-site docking proteins of the Gab family – implications for signalling complex formation and inhibitor design strategies. Mol Biosyst 8: 3346.
  • Suzuki, M., Mimuro, H., Suzuki, T., Park, M., Yamamoto, T., and Sasakawa, C. (2005) Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med 202: 12351247.
  • Tammer, I., Brandt, S., Hartig, R., König, W., and Backert, S. (2007) Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132: 13091319.
  • Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M., and Hatakeyama, M. (2003) Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src Kinase. J Biol Chem 278: 36643670.
  • Vakevainen, M., Greenberg, S., and Hansen, E.J. (2003) Inhibition of phagocytosis by Haemophilus ducreyi requires expression of the LspA1 and LspA2 proteins. Infect Immun 71: 59946003.
  • Ward, C.K., Lumbley, S.R., Latimer, J.L., Cope, L.D., and Hansen, E.J. (1998) Haemophilus ducreyi secretes a filamentous hemagglutinin-like protein. J Bacteriol 180: 60136022.
  • Ward, C.K., Latimer, J.L., Nika, J., Vakevainen, M., Mock, J.R., Deng, K., et al. (2003) Mutations in the lspA1 and lspA2 genes of Haemophilus ducreyi affect the virulence of this pathogen in an animal model system. Infect Immun 71: 24782486.
  • Xu, S., Zhang, C., Gao, J., and Xu, D. (2010) Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif. BMC Genomics 11 (Suppl. 3): S1.
  • Yong, E.C., Chi, E.Y., and Kuo, C.C. (1987) Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J Immunol 139: 12971302.