SEARCH

SEARCH BY CITATION

References

  • Alanio, A., Desnos-Ollivier, M., and Dromer, F. (2011) Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans. MBio 2: 4.
  • Alvarez, M., and Casadevall, A. (2006) Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 16: 21612165.
  • Alvarez, M., and Casadevall, A. (2007) Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol 8: 16.
  • Arora, S., Olszewski, M.A., Tsang, T.M., McDonald, R.A., Toews, G.B., and Huffnagle, G.B. (2011) Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans. Infect Immun 79: 19151926.
  • Artavanis-Tsakonas, K., Love, J.C., Ploegh, H.L., and Vyas, J.M. (2006) Recruitment of CD63 to Cryptococcus neoformans phagosomes requires acidification. Proc Natl Acad Sci USA 103: 1594515950.
  • Bain, J.M., Lewis, L.E., Okai, B., Quinn, J., Gow, N.A., and Erwig, L.P. (2012) Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet Biol 49: 677678.
  • Ben-Abdallah, M., Sturny-Leclere, A., Ave, P., Louise, A., Moyrand, F., Weih, F., et al. (2012) Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-kappaB. PLoS Pathog 8: e1002555.
  • Blackstock, R., and Murphy, J.W. (1997) Secretion of the C3 component of complement by peritoneal cells cultured with encapsulated Cryptococcus neoformans. Infect Immun 65: 41144121.
  • Bose, I., Reese, A.J., Ory, J.J., Janbon, G., and Doering, T.L. (2003) A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2: 655663.
  • Brown, S.M., Campbell, L.T., and Lodge, J.K. (2007) Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol 10: 320325.
  • Byrnes, E.J., 3rd., Li, W., Lewit, Y., Ma, H., Voelz, K., Ren, P., et al. (2010) Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6: e1000850.
  • Byrnes, E.J., Li, W., Ren, P., Lewit, Y., Voelz, K., Fraser, J.A., et al. (2011) A diverse population of Cryptococcus gattii molecular type VGIII in southern Californian HIV/AIDS patients. PLoS Pathog 7: e1002205.
  • Carnell, M., Zech, T., Calaminus, S.D., Ura, S., Hagedorn, M., Johnston, S.A., et al. (2011) Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. J Cell Biol 193: 831839.
  • Casadevall, A. (2012) Amoeba provide insight into the origin of virulence in pathogenic fungi. Adv Exp Med Biol 710: 110.
  • Charlier, C., Nielsen, K., Daou, S., Brigitte, M., Chretien, F., and Dromer, F. (2009) Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 77: 120127.
  • Chaturvedi, V., and Chaturvedi, S. (2011) Cryptococcus gattii: a resurgent fungal pathogen. Trends Microbiol 19: 564571.
  • Chayakulkeeree, M., Johnston, S.A., Oei, J.B., Lev, S., Williamson, P.R., Wilson, C.F., et al. (2011) SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans. Mol Microbiol 80: 10881101.
  • Chun, C.D., Brown, J.C., and Madhani, H.D. (2011) A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans. Cell Host Microbe 9: 243251.
  • Clarke, M., Kohler, J., Arana, Q., Liu, T., Heuser, J., and Gerisch, G. (2002) Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells. J Cell Sci 115 (Part 14): 28932905.
  • Crabtree, J.N., Okagaki, L.H., Wiesner, D.L., Strain, A.K., Nielsen, J.N., and Nielsen, K. (2012) Titan cell production enhances the virulence of Cryptococcus neoformans. Infect Immun 80: 37763785.
  • Cross, C.E., and Bancroft, G.J. (1995) Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect Immun 63: 26042611.
  • Davies, S.F., Clifford, D.P., Hoidal, J.R., and Repine, J.E. (1982) Opsonic requirements for the uptake of Cryptococcus neoformans by human polymorphonuclear leukocytes and monocytes. J Infect Dis 145: 870874.
  • Deretic, V. (2012) Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol 24: 2131.
  • Diamond, R.D., and Bennett, J.E. (1973) Growth of Cryptococcus neoformans within human macrophages in vitro. Infect Immun 7: 231236.
  • Doering, T.L. (2009) How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol 63: 223247.
  • Doering, T.L., Nosanchuk, J.D., Roberts, W.K., and Casadevall, A. (1999) Melanin as a potential cryptococcal defence against microbicidal proteins. Med Mycol 37: 175181.
  • Dromer, F., and Levitz, S.M. (2011) Invasion of Cryptococcus into the central nervous system. In Cryptococcus: From Human Pathogen to Model Yeast. Heitman, J. , Kozel, T.R. , Kwon-Chung, K.J. , Perfect, J.R. , and Casadevall, A. (eds). Washington, DC: ASM Press, pp. 465471.
  • Dromer, F., Casadevall, A., Perfect, J.R., and Sorrel, T. (2011) Cryptococcus neoformans: latency and disease. In Cryptococcus: From Human Pathogen to Model Yeast. Heitman, J. , Kozel, T.R. , Kwon-Chung, K.J. , Perfect, J.R. , and Casadevall, A. (eds). Washington, DC: ASM Press, pp. 431439.
  • Eisenman, H.C., Mues, M., Weber, S.E., Frases, S., Chaskes, S., Gerfen, G., and Casadevall, A. (2007) Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiology 153 (Part 12): 39543962.
  • Fairn, G.D., and Grinstein, S. (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33: 397405.
  • Frases, S., Pontes, B., Nimrichter, L., Rodrigues, M.L., Viana, N.B., and Casadevall, A. (2009) The elastic properties of the Cryptococcus neoformans capsule. Biophys J 97: 937945.
  • Geunes-Boyer, S., Oliver, T.N., Janbon, G., Lodge, J.K., Heitman, J., Perfect, J.R., and Wright, J.R. (2009) Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect Immun 77: 27832794.
  • Geunes-Boyer, S., Beers, M.F., Perfect, J.R., Heitman, J., and Wright, J.R. (2012) Surfactant protein D facilitates Cryptococcus neoformans infection. Infect Immun 80: 24442453.
  • Goldman, D.L., Lee, S.C., Mednick, A.J., Montella, L., and Casadevall, A. (2000) Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect Immun 68: 832838.
  • Goldman, D.L., Khine, H., Abadi, J., Lindenberg, D.J., Pirofski, L., Niang, R., and Casadevall, A. (2001) Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 107: E66.
  • Heung, L.J., Luberto, C., Plowden, A., Hannun, Y.A., and Del Poeta, M. (2004) The sphingolipid pathway regulates Pkc1 through the formation of diacylglycerol in Cryptococcus neoformans. J Biol Chem 279: 2114421153.
  • Huynh, K.K., Kay, J.G., Stow, J.L., and Grinstein, S. (2007) Fusion, fission, and secretion during phagocytosis. Physiology (Bethesda) 22: 366372.
  • Hybiske, K., and Stephens, R.S. (2007) Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci USA 104: 1143011435.
  • Johnston, S.A., and May, R.C. (2010) The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog 6: e1001041.
  • Kozel, T.R. (1977) Non-encapsulated variant of Cryptococcus neoformans. II. Surface receptors for cryptococcal polysaccharide and their role in inhibition of phagocytosis by polysaccharide. Infect Immun 16: 99106.
  • Levitz, S.M., and Tabuni, A. (1991) Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J Clin Invest 87: 528535.
  • Levitz, S.M., Farrell, T.P., and Maziarz, R.T. (1991) Killing of Cryptococcus neoformans by human peripheral blood mononuclear cells stimulated in culture. J Infect Dis 163: 11081113.
  • Levitz, S.M., Nong, S.H., Seetoo, K.F., Harrison, T.S., Speizer, R.A., and Simons, E.R. (1999) Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect Immun 67: 885890.
  • Liu, O.W., Chun, C.D., Chow, E.D., Chen, C., Madhani, H.D., and Noble, S.M. (2008) Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135: 174188.
  • Ma, H., Croudace, J.E., Lammas, D.A., and May, R.C. (2006) Expulsion of live pathogenic yeast by macrophages. Curr Biol 16: 21562160.
  • Ma, H., Croudace, J.E., Lammas, D.A., and May, R.C. (2007) Direct cell-to-cell spread of a pathogenic yeast. BMC Immunol 8: 15.
  • Ma, H., Hagen, F., Stekel, D.J., Johnston, S.A., Sionov, E., Falk, R., et al. (2009) The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proc Natl Acad Sci USA 106: 1298012985.
  • McQuiston, T., Luberto, C., and Del Poeta, M. (2010) Role of host sphingosine kinase 1 in the lung response against Cryptococcosis. Infect Immun 78: 23422352.
  • Mukherjee, S., Feldmesser, M., and Casadevall, A. (1996) J774 murine macrophage-like cell interactions with Cryptococcus neoformans in the presence and absence of opsonins. J Infect Dis 173: 12221231.
  • Nakamura, K., Kinjo, T., Saijo, S., Miyazato, A., Adachi, Y., Ohno, N., et al. (2007) Dectin-1 is not required for the host defense to Cryptococcus neoformans. Microbiol Immunol 51: 11151119.
  • Nicola, A.M., Robertson, E.J., Albuquerque, P., Derengowski Lda, S., and Casadevall, A. (2011) Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. MBio 2: 4.
  • Nicola, A.M., Albuquerque, P., Martinez, L.R., Dal-Rosso, R.A., Saylor, C., De Jesus, M., et al. (2012) Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect Immun 80: 30653076.
  • Nordenfelt, P., and Tapper, H. (2011) Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 90: 271284.
  • Noverr, M.C., Cox, G.M., Perfect, J.R., and Huffnagle, G.B. (2003) Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect Immun 71: 15381547.
  • Okagaki, L.H., and Nielsen, K. (2012) Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections. Eukaryot Cell 11: 820826.
  • Okagaki, L.H., Strain, A.K., Nielsen, J.N., Charlier, C., Baltes, N.J., Chretien, F., et al. (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6: e1000953.
  • Okagaki, L.H., Wang, Y., Ballou, E.R., O'Meara, T.R., Bahn, Y.S., Alspaugh, J.A., et al. (2011) Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli. Eukaryot Cell 10: 13061316.
  • Onfelt, B., Nedvetzki, S., Yanagi, K., and Davis, D.M. (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173: 15111513.
  • Park, B.J., Wannemuehler, K.A., Marston, B.J., Govender, N., Pappas, P.G., and Chiller, T.M. (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525530.
  • Qin, Q.M., Luo, J., Lin, X., Pei, J., Li, L., Ficht, T.A., and de Figueiredo, P. (2011) Functional analysis of host factors that mediate the intracellular lifestyle of Cryptococcus neoformans. PLoS Pathog 7: e1002078.
  • Schaechter, M., Bozeman, F.M., and Smadel, J.E. (1957) Study on the growth of Rickettsiae. II. Morphologic observations of living Rickettsiae in tissue culture cells. Virology 3: 160172.
  • Shao, X., Rivera, J., Niang, R., Casadevall, A., and Goldman, D.L. (2005) A dual role for TGF-beta1 in the control and persistence of fungal pneumonia. J Immunol 175: 67576763.
  • Shapiro, S., Beenhouwer, D.O., Feldmesser, M., Taborda, C., Carroll, M.C., Casadevall, A., and Scharff, M.D. (2002) Immunoglobulin G monoclonal antibodies to Cryptococcus neoformans protect mice deficient in complement component C3. Infect Immun 70: 25982604.
  • Shea, J.M., Kechichian, T.B., Luberto, C., and Del Poeta, M. (2006) The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect Immun 74: 59775988.
  • Siddiqui, A.A., Brouwer, A.E., Wuthiekanun, V., Jaffar, S., Shattock, R., Irving, D., et al. (2005) IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J Immunol 174: 17461750.
  • Spira, G., Paizi, M., Mazar, S., Nussbaum, G., Mukherjee, S., and Casadevall, A. (1996) Generation of biologically active anti-Cryptococcus neoformans IgG, IgE and IgA isotype switch variant antibodies by acridine orange mutagenesis. Clin Exp Immunol 105: 436442.
  • Stano, P., Williams, V., Villani, M., Cymbalyuk, E.S., Qureshi, A., Huang, Y., et al. (2009) App1: an antiphagocytic protein that binds to complement receptors 3 and 2. J Immunol 182: 8491.
  • Steenbergen, J.N., and Casadevall, A. (2003) The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5: 667675.
  • Taborda, C.P., and Casadevall, A. (2002) CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16: 791802.
  • Tucker, S.C., and Casadevall, A. (2002) Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA 99: 31653170.
  • Velagapudi, R., Hsueh, Y.P., Geunes-Boyer, S., Wright, J.R., and Heitman, J. (2009) Spores as infectious propagules of Cryptococcus neoformans. Infect Immun 77: 43454355.
  • Voelz, K., Lammas, D.A., and May, R.C. (2009) Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infect Immun 77: 34503457.
  • Voelz, K., Johnston, S.A., Rutherford, J.C., and May, R.C. (2010) Automated analysis of cryptococcal macrophage parasitism using GFP-tagged cryptococci. PLoS ONE 5: e15968.
  • West, A.P., Brodsky, I.E., Rahner, C., Woo, D.K., Erdjument-Bromage, H., Tempst, P., et al. (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476480.
  • Wozniak, K.L., and Levitz, S.M. (2008) Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components. Infect Immun 76: 47644771.
  • Zaragoza, O., Taborda, C.P., and Casadevall, A. (2003) The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol 33: 19571967.
  • Zaragoza, O., Chrisman, C.J., Castelli, M.V., Frases, S., Cuenca-Estrella, M., Rodriguez-Tudela, J.L., and Casadevall, A. (2008) Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol 10: 20432057.
  • Zaragoza, O., Garcia-Rodas, R., Nosanchuk, J.D., Cuenca-Estrella, M., Rodriguez-Tudela, J.L., and Casadevall, A. (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6: e1000945.