SEARCH

SEARCH BY CITATION

References

  • Beatty, W.L., Rhoades, E.R., Ullrich, H.J., Chatterjee, D., Heuser, J.E., and Russell, D.G. (2000) Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1: 235247.
  • Blander, J.M., and Medzhitov, R. (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304: 10141018.
  • Blander, J.M., and Medzhitov, R. (2006) On regulation of phagosome maturation and antigen presentation. Nat Immunol 7: 10291035.
  • Bobryshev, Y.V. (2006) Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37: 208222.
  • Bowdish, D.M., Sakamoto, K., Kim, M.J., Kroos, M., Mukhopadhyay, S., Leifer, C.A., et al. (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog 5: e1000474.
  • Carroll, P., Schreuder, L.J., Muwanguzi-Karugaba, J., Wiles, S., Robertson, B.D., Ripoll, J., et al. (2010) Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS ONE 5: e9823.
  • de Chastellier, C., Forquet, F., Gordon, A., and Thilo, L. (2009) Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes. Cell Microbiol 11: 11901207.
  • Crowle, A.J., Dahl, R., Ross, E., and May, M.H. (1991) Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 59: 18231831.
  • Daniel, J., Maamar, H., Deb, C., Sirakova, T.D., and Kolattukudy, P.E. (2011) Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog 7: e1002093.
  • Delamarre, L., Pack, M., Chang, H., Mellman, I., and Trombetta, E.S. (2005) Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307: 16301634.
  • Deretic, V., Singh, S., Master, S., Harris, J., Roberts, E., Kyei, G., et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8: 719727.
  • Divangahi, M., Mostowy, S., Coulombe, F., Kozak, R., Guillot, L., Veyrier, F., et al. (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181: 71577165.
  • van den Elzen, P., Garg, S., Leon, L., Brigl, M., Leadbetter, E.A., Gumperz, J.E., et al. (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437: 906910.
  • Fang, F.C. (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2: 820832.
  • Ferwerda, G., Girardin, S.E., Kullberg, B.J., Le Bourhis, L., de Jong, D.J., Langenberg, D.M., et al. (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1: 279285.
  • Geisel, R.E., Sakamoto, K., Russell, D.G., and Rhoades, E.R. (2005) In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J Immunol 174: 50075015.
  • Groemping, Y., and Rittinger, K. (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386: 401416.
  • Henry, R.M., Hoppe, A.D., Joshi, N., and Swanson, J.A. (2004) The uniformity of phagosome maturation in macrophages. J Cell Biol 164: 185194.
  • Hornick, C.A., Thouron, C., DeLamatre, J.G., and Huang, J. (1992) Triacylglycerol hydrolysis in isolated hepatic endosomes. J Biol Chem 267: 33963401.
  • Hunter, R.L., Jagannath, C., and Actor, J.K. (2007) Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb) 87: 267278.
  • Ishikawa, E., Ishikawa, T., Morita, Y.S., Toyonaga, K., Yamada, H., Takeuchi, O., et al. (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206: 28792888.
  • Kim, M.J., Wainwright, H.C., Locketz, M., Bekker, L.G., Walther, G.B., Dittrich, C., et al. (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2: 258274.
  • Listenberger, L.L., and Brown, D.A. (2007) Fluorescent detection of lipid droplets and associated proteins. Curr Protoc Cell Biol Chapter 24: Unit 24 22.
  • Lukacs, G.L., Rotstein, O.D., and Grinstein, S. (1990) Phagosomal acidification is mediated by a vacuolar-type H(+)-ATPase in murine macrophages. J Biol Chem 265: 2109921107.
  • McKinney, J.D., Honer zu Bentrup, K., Munoz-Elias, E.J., Miczak, A., Chen, B., Chan, W.T., et al. (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735738.
  • McLaughlin, B., Chon, J.S., MacGurn, J.A., Carlsson, F., Cheng, T.L., Cox, J.S., and Brown, E.J. (2007) A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog 3: e105.
  • MacMicking, J., Xie, Q.W., and Nathan, C. (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15: 323350.
  • Mahajan, S., Dkhar, H.K., Chandra, V., Dave, S., Nanduri, R., Janmeja, A.K., et al. (2012) Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARgamma and TR4 for survival. J Immunol 188: 55935603.
  • Matsunaga, I., and Moody, D.B. (2009) Mincle is a long sought receptor for mycobacterial cord factor. J Exp Med 206: 28652868.
  • Mattos, K.A., D'Avila, H., Rodrigues, L.S., Oliveira, V.G., Sarno, E.N., Atella, G.C., et al. (2009) Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J Leukoc Biol 87: 371384.
  • Mwandumba, H.C., Russell, D.G., Nyirenda, M.H., Anderson, J., White, S.A., Molyneux, M.E., and Squire, S.B. (2004) Mycobacterium tuberculosis resides in nonacidified vacuoles in endocytically competent alveolar macrophages from patients with tuberculosis and HIV infection. J Immunol 172: 45924598.
  • Nathan, C., and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97: 88418848.
  • Pandey, A.K., and Sassetti, C.M. (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105: 43764380.
  • Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., et al. (2008) Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4: e1000204.
  • Pietersen, R., Thilo, L., and de Chastellier, C. (2004) Mycobacterium tuberculosis and Mycobacterium avium modify the composition of the phagosomal membrane in infected macrophages by selective depletion of cell surface-derived glycoconjugates. Eur J Cell Biol 83: 153158.
  • Quinn, M.T., and Gauss, K.A. (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76: 760781.
  • Rhoades, E., Hsu, F., Torrelles, J.B., Turk, J., Chatterjee, D., and Russell, D.G. (2003) Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol Microbiol 48: 875888.
  • Rohde, K.H., Veiga, D.F., Caldwell, S., Balazsi, G., and Russell, D.G. (2012) Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 8: e1002769.
  • Romagnoli, A., Etna, M.P., Giacomini, E., Pardini, M., Remoli, M.E., Corazzari, M., et al. (2012) ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy 8: 13571370.
  • Russell, D.G. (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2: 569577.
  • Russell, D.G. (2011) Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 240: 252268.
  • Russell, D.G., and Yates, R.M. (2007a) Toll-like receptors and phagosome maturation. Nat Immunol 8: 217; author reply 217–218.
  • Russell, D.G., and Yates, R.M. (2007b) TLR signalling and phagosome maturation: an alternative viewpoint. Cell Microbiol 9: 849850.
  • Russell, D.G., Mwandumba, H.C., and Rhoades, E.E. (2002) Mycobacterium and the coat of many lipids. J Cell Biol 158: 421426.
  • Russell, D.G., Vanderven, B.C., Glennie, S., Mwandumba, H., and Heyderman, R.S. (2009a) The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9: 594600.
  • Russell, D.G., Cardona, P.J., Kim, M.J., Allain, S., and Altare, F. (2009b) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10: 943948.
  • Russell, D.G., VanderVen, B.C., Lee, W., Abramovitch, R.B., Kim, M.J., Homolka, S., et al. (2010) Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8: 6876.
  • Rybicka, J.M., Balce, D.R., Khan, M.F., Krohn, R.M., and Yates, R.M. (2010) NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes. Proc Natl Acad Sci USA 107: 1049610501.
  • Savina, A., Jancic, C., Hugues, S., Guermonprez, P., Vargas, P., Moura, I.C., et al. (2006) NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126: 205218.
  • Schmitz, G., and Grandl, M. (2008) Lipid homeostasis in macrophages – implications for atherosclerosis. Rev Physiol Biochem Pharmacol 160: 93125.
  • Singh, V., Jamwal, S., Jain, R., Verma, P., Gokhale, R., and Rao, K.V. (2012) Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12: 669681.
  • Smith, J., Manoranjan, J., Pan, M., Bohsali, A., Xu, J., Liu, J., et al. (2008) Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 76: 54785487.
  • Sturgill-Koszycki, S., Schlesinger, P.H., Chakraborty, P., Haddix, P.L., Collins, H.L., Fok, A.K., et al. (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263: 678681.
  • Uplekar, S., Heym, B., Friocourt, V., Rougemont, J., and Cole, S.T. (2011) Comparative genomics of Esx genes from clinical isolates of Mycobacterium tuberculosis provides evidence for gene conversion and epitope variation. Infect Immun 79: 40424049.
  • VanderVen, B.C., Yates, R.M., and Russell, D.G. (2009) Intraphagosomal measurement of the magnitude and duration of the oxidative burst. Traffic 10: 372378.
  • VanderVen, B.C., Hermetter, A., Huang, A., Maxfield, F.R., Russell, D.G., and Yates, R.M. (2010) Development of a novel, cell-based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry A 77: 751760.
  • Yang, Y., Yin, C., Pandey, A., Abbott, D., Sassetti, C., and Kelliher, M.A. (2007) NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J Biol Chem 282: 3622336229.
  • Yates, R.M., and Russell, D.G. (2005) Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23: 409417.
  • Yates, R.M., and Russell, D.G. (2008) Real-time spectrofluorometric assays for the lumenal environment of the maturing phagosome. Methods Mol Biol 445: 311325.
  • Yates, R.M., Hermetter, A., Taylor, G.A., and Russell, D.G. (2007) Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8: 241250.