SEARCH

SEARCH BY CITATION

References

  • Andoh, M., Zhang, G., Russell-Lodrigue, K.E., Shive, H.R., Weeks, B.R., and Samuel, J.E. (2007) T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun 75: 32453255.
  • Arena, E.T., Auweter, S.D., Antunes, L.C., Vogl, A.W., Han, J., Guttman, J.A., et al. (2011) The deubiquitinase activity of the Salmonella pathogenicity island 2 effector, SseL, prevents accumulation of cellular lipid droplets. Infect Immun 79: 43924400.
  • Barker, B.R., Taxman, D.J., and Ting, J.P. (2011) Cross-regulation between the IL-1beta/IL-18 processing inflammasome and other inflammatory cytokines. Curr Opin Immunol 23: 591597.
  • Beare, P.A., Samuel, J.E., Howe, D., Virtaneva, K., Porcella, S.F., and Heinzen, R.A. (2006) Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 188: 23092324.
  • Beare, P.A., Gilk, S.D., Larson, C.L., Hill, J., Stead, C.M., Omsland, A., et al. (2011) Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. MBio 2: e00175-11.
  • Beare, P.A., Larson, C.L., Gilk, S.D., and Heinzen, R.A. (2012) Two systems for targeted gene deletion in Coxiella burnetii. Appl Environ Microbiol 78: 45804589.
  • Carey, K.L., Newton, H.J., Luhrmann, A., and Roy, C.R. (2011) The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog 7: e1002056.
  • Case, C.L., Shin, S., and Roy, C.R. (2009) Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infect Immun 77: 19811991.
  • Chen, C., Banga, S., Mertens, K., Weber, M.M., Gorbaslieva, I., Tan, Y., et al. (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci USA 107: 2175521760.
  • Clemens, D.L., and Horwitz, M.A. (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181: 257270.
  • Clemens, D.L., Lee, B.Y., and Horwitz, M.A. (2000) Mycobacterium tuberculosis and Legionella pneumophila phagosomes exhibit arrested maturation despite acquisition of Rab7. Infect Immun 68: 51545166.
  • Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T., and Valdivia, R.H. (2008) Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci USA 105: 93799384.
  • Cockrell, D.C., Beare, P.A., Fischer, E.R., Howe, D., and Heinzen, R.A. (2008) A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells. J Microbiol Methods 72: 321325.
  • Dellacasagrande, J., Capo, C., Raoult, D., and Mege, J.L. (1999) IFN-gamma-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162: 22592265.
  • Dellacasagrande, J., Ghigo, E., Raoult, D., Capo, C., and Mege, J.L. (2002) IFN-gamma-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane TNF and homotypic cell adherence. J Immunol 169: 63096315.
  • Deretic, V., Singh, S., Master, S., Harris, J., Roberts, E., Kyei, G., et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8: 719727.
  • Descamps, D., Le Gars, M., Balloy, V., Barbier, D., Maschalidi, S., Tohme, M., et al. (2012) Toll-like receptor 5 (TLR5), IL-1beta secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing. Proc Natl Acad Sci USA 109: 16191624.
  • Flannagan, R.S., Cosio, G., and Grinstein, S. (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7: 355366.
  • Forland, F., De Carvalho Gomes, H., Nokleby, H., Escriva, A., Coulombier, D., Giesecke, J., and Jansen, A. (2012) Applicability of evidence-based practice in public health: risk assessment on Q fever under an ongoing outbreak. Euro Surveill 17: 20060.
  • Ghigo, E., Capo, C., Tung, C.H., Raoult, D., Gorvel, J.P., and Mege, J.L. (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-gamma mediates its restoration and bacterial killing. J Immunol 169: 44884495.
  • Gikas, A., Kokkini, S., and Tsioutis, C. (2010) Q fever: clinical manifestations and treatment. Expert Rev Anti Infect Ther 8: 529539.
  • Gilk, S.D., Beare, P.A., and Heinzen, R.A. (2010) Coxiella burnetii expresses a functional Delta24 sterol reductase. J Bacteriol 192: 61546159.
  • Haranaga, S., Yamaguchi, H., Ikejima, H., Friedman, H., and Yamamoto, Y. (2003) Chlamydia pneumoniae infection of alveolar macrophages: a model. J Infect Dis 187: 11071115.
  • Hechemy, K.E., McKee, M., Marko, M., Samsonoff, W.A., Roman, M., and Baca, O. (1993) Three-dimensional reconstruction of Coxiella burnetii-infected L929 cells by high-voltage electron microscopy. Infect Immun 61: 44854488.
  • Hill, J., and Samuel, J.E. (2011) Coxiella burnetii acid phosphatase inhibits the release of reactive oxygen intermediates in polymorphonuclear leukocytes. Infect Immun 79: 414420.
  • van der Hoek, W., Schneeberger, P.M., Oomen, T., Wegdam-Blans, M.C., Dijkstra, F., Notermans, D.W., et al. (2012) Shifting priorities in the aftermath of a Q fever epidemic in 2007 to 2009 in The Netherlands: from acute to chronic infection. Euro Surveill 17: 20059.
  • Honstettre, A., Imbert, G., Ghigo, E., Gouriet, F., Capo, C., Raoult, D., and Mege, J.L. (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187: 956962.
  • Howe, D., and Heinzen, R.A. (2006) Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 8: 496507.
  • Howe, D., Melnicakova, J., Barak, I., and Heinzen, R.A. (2003) Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell Microbiol 5: 469480.
  • Howe, D., Shannon, J.G., Winfree, S., Dorward, D.W., and Heinzen, R.A. (2010) Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect Immun 78: 34653474.
  • Hubber, A., and Roy, C.R. (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26: 261283.
  • Hussain, S.K., and Voth, D.E. (2012) Coxiella subversion of intracellular host signaling. Adv Exp Med Biol 984: 131140.
  • Hussain, S.K., Broederdorf, L.J., Sharma, U.M., and Voth, D.E. (2010) Host kinase activity is required for Coxiella burnetii parasitophorous vacuole formation. Front Microbiol 1: 137.
  • Jacobs, R.F., Locksley, R.M., Wilson, C.B., Haas, J.E., and Klebanoff, S.J. (1984) Interaction of primate alveolar macrophages and Legionella pneumophila. J Clin Invest 73: 15151523.
  • Joshi, A.D., Sturgill-Koszycki, S., and Swanson, M.S. (2001) Evidence that Dot-dependent and -independent factors isolate the Legionella pneumophila phagosome from the endocytic network in mouse macrophages. Cell Microbiol 3: 99114.
  • Katti, M.K., Dai, G., Armitige, L.Y., Rivera Marrero, C., Daniel, S., Singh, C.R., et al. (2008) The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 10: 12861303.
  • Khavkin, T., and Tabibzadeh, S.S. (1988) Histologic, immunofluorescence, and electron microscopic study of infectious process in mouse lung after intranasal challenge with Coxiella burnetii. Infect Immun 56: 17921799.
  • Kumar, Y., Cocchiaro, J., and Valdivia, R.H. (2006) The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol 16: 16461651.
  • La Scola, B., Lepidi, H., and Raoult, D. (1997) Pathologic changes during acute Q fever: influence of the route of infection and inoculum size in infected guinea pigs. Infect Immun 65: 24432447.
  • Limonard, G.J., Nabuurs-Franssen, M.H., Weers-Pothoff, G., Wijkmans, C., Besselink, R., Horrevorts, A.M., et al. (2010a) One-year follow-up of patients of the ongoing Dutch Q fever outbreak: clinical, serological and echocardiographic findings. Infection 38: 471477.
  • Limonard, G.J., Peters, J.B., Nabuurs-Franssen, M.H., Weers-Pothoff, G., Besselink, R., Groot, C.A., et al. (2010b) Detailed analysis of health status of Q fever patients 1 year after the first Dutch outbreak: a case-control study. QJM 103: 953958.
  • Luhrmann, A., and Roy, C.R. (2007) Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 75: 52825289.
  • Luhrmann, A., Nogueira, C.V., Carey, K.L., and Roy, C.R. (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci USA 107: 1899719001.
  • MacDonald, L.J., Kurten, R.C., and Voth, D.E. (2012) Coxiella burnetii alters cyclic AMP-dependent protein kinase signaling during growth in macrophages. Infect Immun 80: 19801986.
  • Marriott, H.M., and Dockrell, D.H. (2007) The role of the macrophage in lung disease mediated by bacteria. Exp Lung Res 33: 493505.
  • Master, S.S., Rampini, S.K., Davis, A.S., Keller, C., Ehlers, S., Springer, B., et al. (2008) Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3: 224232.
  • Maurin, M., and Raoult, D. (1999) Q fever. Clin Microbiol Rev 12: 518553.
  • Meghari, S., Capo, C., Raoult, D., and Mege, J.L. (2006) Deficient transendothelial migration of leukocytes in Q fever: the role played by interleukin-10. J Infect Dis 194: 365369.
  • Meghari, S., Bechah, Y., Capo, C., Lepidi, H., Raoult, D., Murray, P.J., and Mege, J.L. (2008) Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4: e23.
  • Nathan, C., and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97: 88418848.
  • Omsland, A., Cockrell, D.C., Howe, D., Fischer, E.R., Virtaneva, K., Sturdevant, D.E., et al. (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA 106: 44304434.
  • Pan, X., Luhrmann, A., Satoh, A., Laskowski-Arce, M.A., and Roy, C.R. (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320: 16511654.
  • Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., et al. (2008) Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog 4: e1000204.
  • Raoult, D., Houpikian, P., Tissot Dupont, H., Riss, J.M., Arditi-Djiane, J., and Brouqui, P. (1999) Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 159: 167173.
  • Raoult, D., Marrie, T., and Mege, J. (2005) Natural history and pathophysiology of Q fever. Lancet Infect Dis 5: 219226.
  • Redecke, V., Dalhoff, K., Bohnet, S., Braun, J., and Maass, M. (1998) Interaction of Chlamydia pneumoniae and human alveolar macrophages: infection and inflammatory response. Am J Respir Cell Mol Biol 19: 721727.
  • Russell-Lodrigue, K.E., Zhang, G.Q., McMurray, D.N., and Samuel, J.E. (2006) Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect Immun 74: 60856091.
  • Russell-Lodrigue, K.E., Andoh, M., Poels, M.W., Shive, H.R., Weeks, B.R., Zhang, G.Q., et al. (2009) Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun 77: 56405650.
  • Saka, H.A., and Valdivia, R.H. (2012) Emerging roles for lipid droplets in immunity and host–pathogen interactions. Annu Rev Cell Dev Biol 28: 411437.
  • Samuel, J.E., and Hendrix, L.R. (2009) Laboratory maintenance of Coxiella burnetii. Curr Protoc Microbiol Chapter 6: Unit6C 1.
  • Samuel, J.E., Frazier, M.E., and Mallavia, L.P. (1985) Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun 49: 775779.
  • Shannon, J.G., Howe, D., and Heinzen, R.A. (2005) Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci USA 102: 87228727.
  • Shannon, J.G., Cockrell, D.C., Takahashi, K., Stahl, G.L., and Heinzen, R.A. (2009) Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunol 10: 26.
  • Sidwell, R.W., Lundgren, D.L., Bushman, J.B., and Thorpe, B.D. (1964) The occurrence of a possible epizootic of Q Fever in fauna of the great salt lake desert of Utah. Am J Trop Med Hyg 13: 754762.
  • Siemsen, D.W., Kirpotina, L.N., Jutila, M.A., and Quinn, M.T. (2009) Inhibition of the human neutrophil NADPH oxidase by Coxiella burnetii. Microbes Infect 11: 671679.
  • Stoenner, H.G., and Lackman, D.B. (1960) The biologic properties of Coxiella burnetii isolated from rodents collected in Utah. Am J Hyg 71: 4551.
  • Stoenner, H.G., Holdenried, R., Lackman, D., and Orsborn, J.S., Jr (1959) The occurrence of Coxiella burnetii, Brucella, and other pathogens among fauna of the great salt lake desert in Utah. Am J Trop Med Hyg 8: 590596.
  • Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R., and Fujimoto, T. (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277: 4450744512.
  • Thiele, D., and Willems, H. (1994) Is plasmid based differentiation of Coxiella burnetii in ‘acute’ and ‘chronic’ isolates still valid? Eur J Epidemiol 10: 427434.
  • de Valk, H. (2012) Q fever: new insights, still many queries. Euro Surveill 17: 20062.
  • Vazquez, C.L., and Colombo, M.I. (2010) Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ 17: 421438.
  • Via, L.E., Deretic, D., Ulmer, R.J., Hibler, N.S., Huber, L.A., and Deretic, V. (1997) Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272: 1332613331.
  • Voth, D.E., and Heinzen, R.A. (2007) Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9: 829840.
  • Voth, D.E., and Heinzen, R.A. (2009a) Coxiella type IV secretion and cellular microbiology. Curr Opin Microbiol 12: 7480.
  • Voth, D.E., and Heinzen, R.A. (2009b) Sustained activation of Akt and Erk1/2 is required for Coxiella burnetii antiapoptotic activity. Infect Immun 77: 205213.
  • Voth, D.E., Howe, D., and Heinzen, R.A. (2007) Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 75: 42634271.
  • Voth, D.E., Howe, D., Beare, P.A., Vogel, J.P., Unsworth, N., Samuel, J.E., and Heinzen, R.A. (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191: 42324242.
  • Voth, D.E., Beare, P.A., Howe, D., Sharma, U.M., Samoilis, G., Cockrell, D.C., et al. (2011) The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 193: 14931503.
  • Yang, C.S., Lee, H.M., Lee, J.Y., Kim, J.A., Lee, S.J., Shin, D.M., et al. (2007) Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. J Neuroinflammation 4: 27.