SEARCH

SEARCH BY CITATION

References

  • Ai, X., Kitazawa, T., Do, A.T., Kusche-Gullberg, M., Labosky, P.A., and Emerson, C.P., Jr (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134: 33273338.
  • Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729777.
  • Caldwell, H.D., Kromhout, J., and Schachter, J. (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31: 11611176.
  • Campbell, L.A., and Kuo, C.C. (2003) Chlamydia pneumoniae and atherosclerosis. Semin Respir Infect 18: 4854.
  • Carabeo, R.A., and Hackstadt, T. (2001) Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Infect Immun 69: 58995904.
  • Chau, B.N., Diaz, R.L., Saunders, M.A., Cheng, C., Chang, A.N., Warrener, P., et al. (2009) Identification of SULF2 as a novel transcriptional target of p53 by use of integrated genomic analyses. Cancer Res 69: 13681374.
  • Chen, J.C., and Stephens, R.S. (1997) Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb Pathog 22: 2330.
  • Chen, J.C., Zhang, J.P., and Stephens, R.S. (1996) Structural requirements of heparin binding to Chlamydia trachomatis. J Biol Chem 271: 1113411140.
  • Chen, Y., Gotte, M., Liu, J., and Park, P.W. (2008) Microbial subversion of heparan sulfate proteoglycans. Mol Cells 26: 415426.
  • Coalson, J.J., Winter, V.T., Bass, L.B., Schachter, J., Grubbs, B.G., and Williams, D.M. (1987) Chlamydia trachomatis pneumonia in the immune, athymic and normal BALB mouse. Br J Exp Pathol 68: 399411.
  • Dautry-Varsat, A., Subtil, A., and Hackstadt, T. (2005) Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol 7: 17141722.
  • Dhoot, G.K., Gustafsson, M.K., Ai, X., Sun, W., Standiford, D.M., and Emerson, C.P., Jr (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293: 16631666.
  • Elwell, C.A., Ceesay, A., Kim, J.H., Kalman, D., and Engel, J.N. (2008) RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog 4: e1000021.
  • Esko, J.D., and Lindahl, U. (2001) Molecular diversity of heparan sulfate. J Clin Invest 108: 169173.
  • He, X., Nair, A., Mekasha, S., Alroy, J., O'Connell, C.M., and Ingalls, R.R. (2011) Enhanced virulence of Chlamydia muridarum respiratory infections in the absence of TLR2 activation. PLoS ONE 6: e20846.
  • Holst, C.R., Bou-Reslan, H., Gore, B.B., Wong, K., Grant, D., Chalasani, S., et al. (2007) Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS ONE 2: e575.
  • Hossain, M.M., Hosono-Fukao, T., Tang, R., Sugaya, N., van Kuppevelt, T.H., Jenniskens, G.J., et al. (2010) Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88. Glycobiology 20: 175186.
  • Hybiske, K., and Stephens, R.S. (2007) Entry mechanisms of Chlamydia trachomatis into non-phagocytic cells. Infect Immun 75: 39253934.
  • Khurana, A., Liu, P., Mellone, P., Lorenzon, L., Vincenzi, B., Datta, K., et al. (2011) HSulf-1 modulates FGF2- and hypoxia-mediated migration and invasion of breast cancer cells. Cancer Res 71: 21522161.
  • Kim, J.H., Jiang, S., Elwell, C.A., and Engel, J.N. (2011) Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog 7: e1002285.
  • Lai, J., Chien, J., Staub, J., Avula, R., Greene, E.L., Matthews, T.A., et al. (2003) Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J Biol Chem 278: 2310723117.
  • Lai, J.P., Sandhu, D.S., Yu, C., Han, T., Moser, C.D., Jackson, K.K., et al. (2008a) Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47: 12111222.
  • Lai, J.P., Sandhu, D.S., Shire, A.M., and Roberts, L.R. (2008b) The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J Gastrointest Cancer 39: 149158.
  • Lamanna, W.C., Baldwin, R.J., Padva, M., Kalus, I., Ten Dam, G., van Kuppevelt, T.H., et al. (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem J 400: 6373.
  • Lamanna, W.C., Kalus, I., Padva, M., Baldwin, R.J., Merry, C.L., and Dierks, T. (2007) The heparanome – the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 129: 290307.
  • Lemjabbar-Alaoui, H., van Zante, A., Singer, M.S., Xue, Q., Wang, Y.Q., Tsay, D., et al. (2010) Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis. Oncogene 29: 635646.
  • Li, J., Kleeff, J., Abiatari, I., Kayed, H., Giese, N.A., Felix, K., et al. (2005) Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer. Mol Cancer 4: 14.
  • Lum, D.H., Tan, J., Rosen, S.D., and Werb, Z. (2007) Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2. Mol Cell Biol 27: 678688.
  • Lundin, L., Larsson, H., Kreuger, J., Kanda, S., Lindahl, U., Salmivirta, M., and Claesson-Welsh, L. (2000) Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J Biol Chem 275: 2465324660.
  • Mandell, G.L., Bennett, J.E., and Dolin, R. (2010) Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th edn. Philadelphia, PA: Churchill Livingstone/Elsevier.
  • Morimoto-Tomita, M., Uchimura, K., Werb, Z., Hemmerich, S., and Rosen, S.D. (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277: 4917549185.
  • Moulder, J.W. (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55: 143190.
  • Murthy, A.K., Sharma, J., Coalson, J.J., Zhong, G., and Arulanandam, B.P. (2004) Chlamydia trachomatis pulmonary infection induces greater inflammatory pathology in immunoglobulin A deficient mice. Cell Immunol 230: 5664.
  • Nawroth, R., van Zante, A., Cervantes, S., McManus, M., Hebrok, M., and Rosen, S.D. (2007) Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS ONE 2: e392.
  • van Ooij, C., Apodaca, G., and Engel, J. (1997) Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect Immun 65: 758766.
  • Otsuki, S., Hanson, S.R., Miyaki, S., Grogan, S.P., Kinoshita, M., Asahara, H., et al. (2010) Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc Natl Acad Sci USA 107: 1020210207.
  • Phillips, J.J., Huillard, E., Robinson, A.E., Ward, A., Lum, D.H., Polley, M.Y., et al. (2012) Heparan sulfate sulfatase SULF2 regulates PDGFRalpha signaling and growth in human and mouse malignant glioma. J Clin Invest 122: 911922.
  • Ramsey, K.H., Sigar, I.M., Schripsema, J.H., Denman, C.J., Bowlin, A.K., Myers, G.A., and Rank, R.G. (2009) Strain and virulence diversity in the mouse pathogen Chlamydia muridarum. Infect Immun 77: 32843293.
  • Rank, R.G. (2006) Chlamydial diseases. In The Mouse in Biomedical Research, 2nd edn. Fox, J. , Barthold, S. , Newcomer, C. , Smith, A. , Quimby, F. , and Davisson, M. (eds). San Diego, CA: Academic press, pp. 325348.
  • Rasmussen-Lathrop, S.J., Koshiyama, K., Phillips, N., and Stephens, R.S. (2000) Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells. Cell Microbiol 2: 137144.
  • Ratzka, A., Kalus, I., Moser, M., Dierks, T., Mundlos, S., and Vortkamp, A. (2008) Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development. Dev Dyn 237: 339353.
  • Rosmarin, D.M., Carette, J.E., Olive, A.J., Starnbach, M.N., Brummelkamp, T.R., and Ploegh, H.L. (2012) Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proc Natl Acad Sci USA 109: 1005910064.
  • Rusnati, M., Coltrini, D., Caccia, P., Dell'Era, P., Zoppetti, G., Oreste, P., et al. (1994) Distinct role of 2-O-, N-, and 6-O-sulfate groups of heparin in the formation of the ternary complex with basic fibroblast growth factor and soluble FGF receptor-1. Biochem Biophys Res Commun 203: 450458.
  • Shukla, D., Liu, J., Blaiklock, P., Shworak, N.W., Bai, X., Esko, J.D., et al. (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99: 1322.
  • Stephens, R.S., Poteralski, J.M., and Olinger, L. (2006) Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulfate glycosaminoglycans. Infect Immun 74: 17951799.
  • Su, H., Raymond, L., Rockey, D.D., Fischer, E., Hackstadt, T., and Caldwell, H.D. (1996) A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci USA 93: 1114311148.
  • Tang, R., and Rosen, S.D. (2009) Functional consequences of the subdomain organization of the sulfs. J Biol Chem 284: 2150521514.
  • Tiwari, V., Maus, E., Sigar, I.M., Ramsey, K.H., and Shukla, D. (2012) Role of heparan sulfate in sexually transmitted infections. Glycobiology 22: 14021412.
  • Winer, J., Jung, C.K., Shackel, I., and Williams, P.M. (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270: 4149.
  • Wuppermann, F.N., Hegemann, J.H., and Jantos, C.A. (2001) Heparan sulfate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae. J Infect Dis 184: 181187.
  • Yabushita, H., Noguchi, Y., Habuchi, H., Ashikari, S., Nakabe, K., Fujita, M., et al. (2002) Effects of chemically modified heparin on Chlamydia trachomatis serovar L2 infection of eukaryotic cells in culture. Glycobiology 12: 345351.
  • Yue, X., Li, X., Nguyen, H.T., Chin, D.R., Sullivan, D.E., and Lasky, J.A. (2008) Transforming growth factor-beta1 induces heparan sulfate 6-O-endosulfatase 1 expression in vitro and in vivo. J Biol Chem 283: 2039720407.
  • Zautner, A.E., Jahn, B., Hammerschmidt, E., Wutzler, P., and Schmidtke, M. (2006) N- and 6-O-sulfated heparan sulfates mediate internalization of coxsackievirus B3 variant PD into CHO-K1 cells. J Virol 80: 66296636.
  • Zhang, J.P., and Stephens, R.S. (1992) Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69: 861869.