SEARCH

SEARCH BY CITATION

References

  • Archambaud, C., Salcedo, S.P., Lelouard, H., Devilard, E., de Bovis, B., Van Rooijen, N., et al. (2010) Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection. Eur J Immunol 40: 34583471.
  • Ashtekar, A.R., Zhang, P., Katz, J., Deivanayagam, C.C.S., Rallabhandi, P., Vogel, S.N., et al. (2008) TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J Leukoc Biol 84: 14341446.
  • Avila-Calderon, E.D., Lopez-Merino, A.E., Jain, N., Peralta, H., Oliver Lopez-Villegas, E., Sriranganathan, N., et al. (2012) Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin Dev Immunol 2012: 352493.
  • Baena, A., and Porcelli, S.A. (2009) Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 74: 189204.
  • Banchereau, J., and Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392: 245252.
  • Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y., et al. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767811.
  • Bar-Haim, E., Gat, O., Markel, G., Cohen, H., Shafferman, A., and Velan, B. (2008) Interrelationship between dendritic cell trafficking and Francisella tularensis dissemination following airway infection. PLoS Pathog 4: e1000211.
  • Barquero-Calvo, E., Conde-Alvarez, R., Chacon-Diaz, C., Quesada-Lobo, L., Martirosyan, A., Guzman-Verri, C., et al. (2009) The differential interaction of Brucella and Ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS ONE 4: e5893.
  • Baud, D., Peter, O., Langel, C., Regan, L., and Greub, G. (2009) Seroprevalence of Coxiella burnetii and Brucella abortus among pregnant women. Clin Microbiol Infect 15: 499501.
  • Bauler, T.J., Chase, J.C., and Bosio, C.M. (2011) IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis. J Immunol 187: 18451855.
  • Belhocine, K., and Monack, D.M. (2012) Francisella infection triggers activation of the AIM2 inflammasome in murine dendritic cells. Cell Microbiol 14: 7180.
  • Ben Nasr, A., Haithcoat, J., Masterson, J.E., Gunn, J.S., Eaves-Pyles, T., and Klimpel, G.R. (2006) Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J Leukoc Biol 80: 774786.
  • Berguer, P.M., Mundinano, J., Piazzon, I., and Goldbaum, F.A. (2006) A polymeric bacterial protein activates dendritic cells via TLR4. J Immunol 176: 23662372.
  • Berguer, P.M., Alzogaray, V.A., Hugo Rossi, A., Mundinano, J., Piazzon, I., and Goldbaum, F.A. (2012) A polymeric protein induces specific cytotoxicity in a TLR4 dependent manner in the absence of adjuvants. PLoS ONE 7: e45705.
  • Biedzka-Sarek, M., and Skurnik, M. (2006) How to outwit the enemy: dendritic cells face Salmonella. Apmis 114: 589600.
  • Billard, E., Cazevieille, C., Dornand, J., and Gross, A. (2005) High susceptibility of human dendritic cells to invasion by the intracellular pathogens Brucella suis, Brucella abortus, and Brucella melitensis. Infect Immun 73: 84188424.
  • Billard, E., Dornand, J., and Gross, A. (2007a) Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion. Infect Immun 75: 49804989.
  • Billard, E., Dornand, J., and Gross, A. (2007b) Interaction of Brucella suis and Brucella abortus rough strains with human dendritic cells. Infect Immun 75: 59165923.
  • Billard, E., Dornand, J., and Gross, A. (2008) VirB type IV secretory system does not contribute to Brucella suis’ avoidance of human dendritic cell maturation. FEMS Immunol Med Microbiol 53: 404412.
  • Boschiroli, M., Foulongne, V., and O'Callaghan, D. (2001) Brucellosis: a worldwide zoonosis. Curr Opin Microbiol 4: 5864.
  • Bosio, C.M., and Dow, S.W. (2005) Francisella tularensis induces aberrant activation of pulmonary dendritic cells. J Immunol 175: 67926801.
  • Bosio, C.M., Bielefeldt-Ohmann, H., and Belisle, J.T. (2007) Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Immunol 178: 45384547.
  • Brouqui, P., and Raoult, D. (2001) Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev 14: 177207.
  • Bueno, S.M., Riedel, C.A., Carreño, L.J., and Kalergis, A.M. (2010) Virulence mechanisms displayed by Salmonella to impair dendritic cell function. Curr Med Chem 17: 11561166.
  • Bueno, S.M., Riquelme, S.A., Riedel, C.A., and Kalergis, A.M. (2012) Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 137: 2836.
  • Buzgan, T., Karahocagil, M.K., Irmak, H., Baran, A.I., Karsen, H., Evirgen, O., et al. (2010) Clinical manifestations and complications in 1028 cases of brucellosis: a retrospective evaluation and review of the literature. Int J Infect Dis 14: E469E478.
  • Campos, M.A., Rosinha, G.M.S., Almeida, I.C., Salgueiro, X.S., Jarvis, B.W., Splitter, G.A., et al. (2004) Role of toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 72: 176186.
  • Celli, J. (2006) Surviving inside a macrophage: the many ways of Brucella. Res Microbiol 157: 9398.
  • Chase, J.C., and Bosio, C.M. (2010) The presence of CD14 overcomes evasion of innate immune responses by virulent Francisella tularensis in human dendritic cells in vitro and pulmonary cells in vivo. Infect Immun 78: 154167.
  • Chase, J.C., Celli, J., and Bosio, C.M. (2009) Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4. Infect Immun 77: 180195.
  • Conde-Alvarez, R., Arce-Gorvel, V., Iriarte, M., Mancek-Keber, M., Barquero-Calvo, E., Palacios-Chaves, L., et al. (2012) The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition. PLoS Pathog 8: e1002675.
  • Cooper, C.L., Van Caeseele, P., Canvin, J., and Nicolle, L.E. (1999) Chronic prosthetic device infection with Francisella tularensis. Clin Infect Dis 29: 15891591.
  • Copin, R., De Baetselier, P., Carlier, Y., Letesson, J.-J., and Muraille, E. (2007) MyD88-dependent activation of B220-CD11b+LY-6C+dendritic cells during Brucella melitensis infection. J Immunol 178: 51825191.
  • Copin, R., Vitry, M.-A., Mambres, D.H., Machelart, A., De Trez, C., Vanderwinden, J.-M., et al. (2012) In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice. PLoS Pathog 8: e1002575.
  • Dai, S., Rajaram, M.V.S., Curry, H.M., Leander, R., and Schlesinger, L.S. (2013) Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLoS Pathog 9: e1003114.
  • De Pascalis, R., Taylor, B.C., and Elkins, K.L. (2008) Diverse myeloid and lymphoid cell subpopulations produce gamma interferon during early innate immune responses to Francisella tularensis live vaccine strain. Infect Immun 76: 43114321.
  • Dennis, D.T., Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., et al. (2001) Tularemia as a biological weapon – medical and public health management. JAMA 285: 27632773.
  • Fuller, C.L., Brittingham, K.C., Porter, M.W., Hepburn, M.J., Petitt, P.L., Pittman, P.R., et al. (2007) Transcriptome analysis of human immune responses following live vaccine strain (LVS) Francisella tularensis vaccination. Mol Immunol 44: 31733184.
  • Gringhuis, S.I., den Dunnen, J., Litjens, M., van der Vlist, M., and Geijtenbeek, T.B.H. (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10: 10811089.
  • Hall, J.D., Woolard, M.D., Gunn, B.M., Craven, R.R., Taft-Benz, S., Frelinger, J.A., et al. (2008) Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun 76: 58435852.
  • Hazlett, K.R.O., Caldon, S.D., McArthur, D.G., Cirillo, K.A., Kirimanjeswara, G.S., Magguilli, M.L., et al. (2008) Adaptation of Francisella tularensis to the mammalian environment is governed by cues which can be mimicked in vitro. Infect Immun 76: 44794488.
  • Helft, J., Ginhoux, F., Bogunovic, M., and Merad, M. (2010) Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 234: 5575.
  • Heller, M.C., Watson, J.L., Blanchard, M.T., Jackson, K.A., Stott, J.L., and Tsolis, R.M. (2012) Characterization of Brucella abortus infection of bovine monocyte-derived dendritic cells. Vet Immunol Immunopathol 149: 255261.
  • Herrada, A.A., Contreras, F.J., Tobar, J.A., Pacheco, R., and Kalergis, A.M. (2007) Immune complex-induced enhancement of bacterial antigen presentation requires Fcγ Receptor III expression on dendritic cells. Proc Natl Acad Sci USA 104: 1340213407.
  • Herrmann, J.-L., and Lagrange, P.-H. (2005) Dendritic cells and Mycobacterium tuberculosis: which is the Trojan horse? Pathol Biol 53: 3540.
  • Hong, K.-J., Wickstrum, J.R., Yeh, H.-W., and Parmely, M.J. (2007) Toll-like receptor 2 controls the gamma interferon response to Francisella tularensis by mouse liver lymphocytes. Infect Immun 75: 53385345.
  • Huang, L.-Y., Sousa, C.R., Itoh, Y., Inman, J., and Scott, D.E. (2001) IL-12 induction by a Th1-inducing adjuvant in vivo: dendritic cell subsets and regulation by IL-10. J Immunol 167: 14231430.
  • Huang, L.-Y., Aliberti, J., Leifer, C.A., Segal, D.M., Sher, A., Golenbock, D.T., et al. (2003) Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is toll-like receptor 2 dependent. J Immunol 171: 14411446.
  • Huang, L.-Y., Ishii, K.J., Akira, S., Aliberti, J., and Golding, B. (2005) Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J Immunol 175: 39643970.
  • Joffre, O., Nolte, M.A., Spoerri, R., and Reis e Sousa, C. (2009) Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 227: 234247.
  • Jozefowski, S., Sobota, A., and Kwiatkowska, K. (2008) How Mycobacterium tuberculosis subverts host immune responses. Bioessays 30: 943954.
  • Kapsenberg, M.L. (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3: 984993.
  • Katz, J., Zhang, P., Martin, M., Vogel, S.N., and Michalek, S.M. (2006) Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect Immun 74: 28092816.
  • Kaya, A., Uysal, I.O., Guven, A.S., Engin, A., Gulturk, A., Icagasioglu, F.D., et al. (2011) Treatment failure of gentamicin in pediatric patients with oropharyngeal tularemia. Med Sci Monit 17: CR376CR380.
  • Khan, N., Gowthaman, U., Pahari, S., and Agrewala, J.N. (2012) Manipulation of costimulatory molecules by intracellular pathogens: veni, vidi, vici!! PLoS Pathog 8: e1002676.
  • Krishnan, N., Robertson, B.D., and Thwaites, G. (2010) The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis 90: 361366.
  • Leander, R., Dai, S., Schlesinger, L.S., and Friedman, A. (2012) A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection. PLoS Comput Biol 8: e1002757.
  • Li, X., and He, Y. (2012) Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection. PLoS ONE 7: e43512.
  • Lin, Y., Ritchea, S., Logar, A., Slight, S., Messmer, M., Rangel-Moreno, J., et al. (2009) Interleukin-17 is required for T Helper 1 cell immunity and host resistance to the intracellular pathogen Francisella tularensis. Immunity 31: 799810.
  • Liu, K., and Nussenzweig, M.C. (2010) Origin and development of dendritic cells. Immunol Rev 234: 4554.
  • Lopez-Bravo, M., and Ardavin, C. (2008) In vivo induction of immune responses to pathogens by conventional dendritic cells. Immunity 29: 343351.
  • Macedo, G.C., Magnani, D.M., Carvalho, N.B., Bruna-Romero, O., Gazzinelli, R.T., and Oliveira, S.C. (2008) Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J Immunol 180: 10801087.
  • Madariaga, M.G., Rezai, K., Trenholme, G.M., and Weinstein, R.A. (2003) Q fever: a biological weapon in your backyard. Lancet Infect Dis 3: 709721.
  • Malik, M., Bakshi, C.S., Sahay, B., Shah, A., Lotz, S.A., and Sellati, T.J. (2006) Toll-like receptor 2 is required for control of pulmonary infection with Francisella tularensis. Infect Immun 74: 36573662.
  • Marmion, B.P., Storm, P.A., Ayres, J.G., Semendric, L., Mathews, L., Winslow, W., et al. (2005) Long-term persistence of Coxiella burnetii after acute primary Q fever. QJM 98: 720.
  • Martirosyan, A., Moreno, E., and Gorvel, J.-P. (2011) An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol Rev 240: 211234.
  • Maurin, M., and Raoult, D. (1999) Q fever. Clin Microbiol Rev 12: 518553.
  • Medina, E.A., Morris, I.R., and Berton, M.T. (2010) Phosphatidylinositol 3-kinase activation attenuates the TLR2-mediated macrophage proinflammatory cytokine response to Francisella tulrensis live vaccine strain. J Immunol 185: 75627572.
  • Meraviglia, S., Caccamo, N., Salerno, A., Sireci, G., and Dieli, F. (2010) Partial and ineffective activation of Vγ9Vδ2 T cells by Mycobacterium tuberculosis-infected dendritic cells. J Immunol 185: 17701776.
  • Natarajan, K., Kundu, M., Sharma, P., and Basu, J. (2011) Innate immune responses to M. tuberculosis infection. Tuberculosis 91: 427431.
  • Ni, M., Martire, D., Scotet, E., Bonneville, M., Sanchez, F., and Lafont, V. (2012) Full restoration of Brucella-infected dendritic cell functionality through Vγ9Vδ2 T Helper Type 1 crosstalk. PLoS ONE 7: e43613.
  • Oliveira, F.S., Carvalho, N.B., Brandao, A.P.M., Gomes, M.T.R., de Almeida, L.A., and Oliveira, S.C. (2011) Interleukin-1 receptor-associated kinase 4 is essential for initial host control of Brucella abortus infection. Infect Immun 79: 46884695.
  • Omsland, A., Cockrell, D.C., Howe, D., Fischer, E.R., Virtaneva, K., Sturdevant, D.E., et al. (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci USA 106: 44304434.
  • Oyston, P.C.F., Sjostedt, A., and Titball, R.W. (2004) Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol 2: 967978.
  • Parker, N.R., Barralet, J.H., and Bell, A.M. (2006) Q fever. Lancet 367: 679688.
  • Pasquevich, K.A., Garcia Samartino, C., Coria, L.M., Estein, S.M., Zwerdling, A., Ibanez, A.E., et al. (2010) The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J Immunol 184: 52005212.
  • Pasquevich, K.A., Ibanez, A.E., Coria, L.M., Garcia Samartino, C., Estein, S.M., Zwerdling, A., et al. (2011) An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice. PLoS ONE 6: e16203.
  • Periasamy, S., Singh, A., Sahay, B., Rahman, T., Feustel, P.J., Pham, G.H., et al. (2011) Development of tolerogenic dendritic cells and regulatory T cells favors exponential bacterial growth and survival during early respiratory tularemia. J Leukoc Biol 90: 493507.
  • Prendergast, K.A., and Kirman, J.R. (2013) Dendritic cell subsets in mycobacterial infection: control of bacterial growth and T cell responses. Tuberculosis 93: 115122.
  • del Rio, M.-L., Bernhardt, G., Rodriguez-Barbosa, J.-I., and Foerster, R. (2010) Development and functional specialization of CD103+ dendritic cells. Immunol Rev 234: 268281.
  • Salcedo, S.P., Marchesini, M.I., Lelouard, H., Fugier, E., Jolly, G., Balor, S., et al. (2008) Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog 4: e21.
  • Sauer, J.-D., Shannon, J.G., Howe, D., Hayes, S.F., Swanson, M.S., and Heinzen, R.A. (2005) Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun 73: 44944504.
  • Schmid, M.A., Kingston, D., Boddupalli, S., and Manz, M.G. (2010) Instructive cytokine signals in dendritic cell lineage commitment. Immunol Rev 234: 3244.
  • Schmitt, D.M., O'Dee, D.M., Horzempa, J., Carlson, P.E., Russo, B.C., Bales, J.M., et al. (2012) A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy. PLoS ONE 7: e31172.
  • Shannon, J.G., Howe, D., and Heinzen, R.A. (2005a) Lack of dendritic cell maturation following infection by Coxiella burnetii synthesizing different lipopolysaccharide chemotypes. In Rickettsioses: From Genome to Proteome, Pathobiology, and Rickettsiae As An International Threat. Hechemy, K. , Oteo, J. , Raoult, D. , Silverman, D. , and Blanco, J. (eds). New York: Annals of the New York Academy of Sciences, pp. 154160.
  • Shannon, J.G., Howe, D., and Heinzen, R.A. (2005b) Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci USA 102: 87228727.
  • Shannon, J.G., Cockrell, D.C., Takahashi, K., Stahl, G.L., and Heinzen, R.A. (2009) Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunol 10: 26.
  • Shortman, K., and Naik, S.H. (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7: 1930.
  • Sinha, A., Salam, N., Gupta, S., and Natarajan, K. (2007) Mycobacterium tuberculosis and dendritic cells: recognition, activation and functional implications. Indian J Biochem Biophys 44: 279288.
  • Sjostedt, A. (2006) Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect 8: 561567.
  • Slight, S.R., Lin, Y., Messmer, M., and Khader, S.A. (2011) Francisella tularensis LVS-induced Interleukin-12 p40 cytokine production mediates dendritic cell migration through IL-12 receptor beta 1. Cytokine 55: 372379.
  • Sundquist, M., Rydstrom, A., and Wick, M.J. (2004) Immunity to Salmonella from a dendritic point of view. Cell Microbiol 6: 111.
  • Surendran, N., Hiltbold, E.M., Heid, B., Sriranganathan, N., Boyle, S.M., Zimmerman, K.L., et al. (2010) Heat-killed and gamma-irradiated Brucella strain RB51 stimulates enhanced dendritic cell activation, but not function compared with the virulent smooth strain 2308. FEMS Immunol Med Microbiol 60: 147155.
  • Surendran, N., Hiltbold, E.M., Heid, B., Sriranganathan, N., Boyle, S.M., Zimmerman, K.L., et al. (2011) Live Brucella abortus rough vaccine strain RB51 stimulates enhanced innate immune response in vitro compared to rough vaccine strain RB51SOD and virulent smooth strain 2308 in murine bone marrow-derived dendritic cells. Vet Microbiol 147: 7582.
  • Surendran, N., Hiltbold, E.M., Held, B., Akira, S., Standiford, T.J., Sriranganathan, N., et al. (2012) Role of TLRs in Brucella mediated murine DC activation in vitro and clearance of pulmonary infection in vivo. Vaccine 30: 15021512.
  • Švajger, U., Anderluh, M., Jeras, M., and Obermajer, N. (2010) C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 22: 13971405.
  • Tam, M.A., Rydstrom, A., Sundquist, M., and Wick, M.J. (2008) Early cellular responses to Salmonella infection: dendritic cells, monocytes, and more. Immunol Rev 225: 140162.
  • Tarnvik, A., and Berglund, L. (2003) Tularaemia. Eur Respir J 21: 361373.
  • Urdahl, K.B., Shafiani, S., and Ernst, J.D. (2011) Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4: 288293.
  • Villadangos, J.A., and Schnorrer, P. (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7: 543555.
  • Wang, Y., Xiong, X., Wu, D., Wang, X., and Wen, B. (2011) Efficient activation of T cells by human monocyte-derived dendritic cells (HMDCs) pulsed with Coxiella burnetii outer membrane protein Com1 but not by HspB-pulsed HMDCs. BMC Immunol 12: 52.
  • Watowich, S.S., and Liu, Y.-J. (2010) Mechanisms regulating dendritic cell specification and development. Immunol Rev 238: 7692.
  • Watson, K.G., and Holden, D.W. (2010) Dynamics of growth and dissemination of Salmonella in vivo. Cell Microbiol 12: 13891397.
  • Wegdam-Blans, M.C.A., Kampschreur, L.M., Delsing, C.E., Bleeker-Rovers, C.P., Sprong, T., van Kasteren, M.E.E., et al. (2012) Chronic Q fever: review of the literature and a proposal of new diagnostic criteria. J Infect 64: 247259.
  • Wei, Y., Wang, X., Xiong, X., and Wen, B. (2011) Coxiella burnetii antigen-stimulated dendritic cells mediated protection against Coxiella burnetii in BALB/c mice. J Infect Dis 203: 283291.
  • Wick, M.J. (2002) The role of dendritic cells during Salmonella infection. Curr Opin Immunol 14: 437443.
  • Wick, M.J. (2007) Monocyte and dendritic cell recruitment and activation during oral Salmonella infection. Immunol Lett 112: 6874.
  • Wick, M.J. (2011) Innate immune control of Salmonella enterica serovar Typhimurium: mechanisms contributing to combating systemic Salmonella infection. J Innate Immun 3: 543549.
  • Wickstrum, J.R., Bokhari, S.M., Fischer, J.L., Pinson, D.M., Yeh, H.-W., Horvat, R.T., et al. (2009) Francisella tularensis induces extensive caspase-3 activation and apoptotic cell death in the tissues of infected mice. Infect Immun 77: 48274836.
  • Wu, L., and Liu, Y.-J. (2007) Development of dendritic-cell lineages. Immunity 26: 741750.
  • Xiong, X., Meng, Y., Wang, X., Qi, Y., Li, J., Duan, C., et al. (2012) Mice immunized with bone marrow-derived dendritic cells stimulated with recombinant Coxiella burnetii Com1 and Mip demonstrate enhanced bacterial clearance in association with a Th1 immune response. Vaccine 30: 68096815.
  • Zamboni, D.S., Campos, M.A., Torrecilhas, A.C.T., Kiss, K., Samuel, J.E., Golenbock, D.T., et al. (2004) Stimulation of Toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem 279: 5440554415.
  • Zwerdling, A., Delpino, M.V., Barrionuevo, P., Cassataro, J., Pasquevich, K.A., Samartino, C.G., et al. (2008) Brucella lipoproteins mimic dendritic cell maturation induced by Brucella abortus. Microbes Infect 10: 13461354.