SEARCH

SEARCH BY CITATION

References

  • Aitio, O., Hellman, M., Kazlauskas, A., Vingadassalom, D.F., Leong, J.M., Saksela, K., and Permi, P. (2010) Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Proc Natl Acad Sci USA 107: 2174321748.
  • Aitio, O., Hellman, M., Skehan, B., Kesti, T., Leong, J.M., Saksela, K., and Permi, P. (2012) Enterohaemorrhagic Escherichia coli exploits a tryptophan switch to hijack host f-actin assembly. Structure 20: 16921703.
  • Antón, I.M., Lu, W., Mayer, B.J., Ramesh, N., and Geha, R.S. (1998) The Wiskott-Aldrich syndrome protein-interacting protein (WIP) binds to the adaptor protein Nck. J Biol Chem 273: 2099220995.
  • Bai, L., Schüller, S., Whale, A., Mousnier, A., Marches, O., Wang, L., et al. (2008) Enteropathogenic Escherichia coli O125:H6 triggers attaching and effacing lesions on human intestinal biopsy specimens independently of Nck and TccP/TccP2. Infect Immun 76: 361368.
  • Berger, C.N., Crepin, V.F., Jepson, M.A., Arbeloa, A., and Frankel, G. (2009) The mechanisms used by enteropathogenic Escherichia coli to control filopodia dynamics. Cell Microbiol 11: 309322.
  • Brady, M.J., Campellone, K.G., Ghildiyal, M., and Leong, J.M. (2007) Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol 9: 22422253.
  • Bray, J. (1945) Isolation of antigenically homogeneous strains of Bact. coli neopolitanum from summer diarrhoea of infants. J Pathol Bacteriol 57: 239247.
  • Buday, L., Wunderlich, L., and Tamás, P. (2002) The Nck family of adapter proteins: regulators of actin cytoskeleton. Cell Signal 14: 723731.
  • Bulgin, R.R., Arbeloa, A., Chung, J.C.S., and Frankel, G. (2009) EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. Cell Microbiol 11: 217229.
  • Campellone, K.G., and Leong, J.M. (2005) Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol Microbiol 56: 416432.
  • Campellone, K.G., Giese, A., Tipper, D.J., and Leong, J.M. (2002) A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol 43: 12271241.
  • Campellone, K.G., Rankin, S., Pawson, T., Kirschner, M.W., Tipper, D.J., and Leong, J.M. (2004a) Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol 164: 407416.
  • Campellone, K.G., Robbins, D., and Leong, J.M. (2004b) EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 7: 217228.
  • Campellone, K.G., Brady, M.J., Alamares, J.G., Rowe, D.C., Skehan, B.M., Tipper, D.J., and Leong, J.M. (2006) Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol 8: 14881503.
  • Campellone, K.G., Cheng, H.-C., Robbins, D., Siripala, A.D., McGhie, E.J., Hayward, R.D., et al. (2008) Repetitive N-WASP-binding elements of the enterohemorrhagic Escherichia coli effector EspF(U) synergistically activate actin assembly. PLoS Pathog 4: e1000191.
  • Cheng, H.-C., Skehan, B.M., Campellone, K.G., Leong, J.M., and Rosen, M.K. (2008) Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U). Nature 454: 10091013.
  • Clements, A., Young, J., Constantinou, K., and Frankel, G. (2012) Infection strategies of enteric pathogenic Escherichia coli. Gut Microbes 3: 7187.
  • Crepin, V.F., Girard, F., Schüller, S., Phillips, A.D., Mousnier, A., and Frankel, G. (2010) Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivo. Mol Microbiol 75: 308323.
  • Dean, P., Young, L., Quitard, S., and Kenny, B. (2013) Insights into the pathogenesis of enteropathogenic E. coli using an improved intestinal enterocyte model. PLoS ONE 8: e55284.
  • Deibel, C., Krämer, S., Chakraborty, T., and Ebel, F. (1998) EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol Microbiol 28: 463474.
  • Deng, W., Vallance, B.A., Li, Y., Puente, J.L., and Finlay, B.B. (2003) Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol Microbiol 48: 95115.
  • DeVinney, R., Stein, M., Reinscheid, D., Abe, A., Ruschkowski, S., and Finlay, B.B. (1999) Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun 67: 23892398.
  • DeVinney, R., Puente, J.L., Gauthier, A., Goosney, D., and Finlay, B.B. (2001) Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol Microbiol 41: 14451458.
  • Disanza, A., Mantoani, S., Hertzog, M., Gerboth, S., Frittoli, E., Steffen, A., et al. (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8–IRSp53 complex. Nat Cell Biol 8: 13371347.
  • Dong, N., Liu, L., and Shao, F. (2010) A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J 29: 13631376.
  • Donnenberg, M., Calderwood, S.B., Donohue-Rolfe, A., Keusch, G.T., and Kaper, J.B. (1990) Construction and analysis of TnphoA mutants of enteropathogenic Escherichia coli unable to invade HEp-2 cells. Infect Immun 58: 15651571.
  • Donnenberg, M., Tacket, C., James, S., Genevieve, L., Nataro, J.P., Wasserman, S., et al. (1993b) Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J Clin Invest 92: 14121417.
  • Donnenberg, M.S., Tzipori, S., McKee, M.L., O'Brien, A.D., Alroy, J., and Kaper, J.B. (1993a) The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J Clin Invest 92: 14181424.
  • Frank, C., Werber, D., Cramer, J., Asker, M., Faber, M., der Heiden, M., et al. (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 Outbreak in Germany. N Engl J Med 365: 17711780.
  • Frankel, G., Candy, D.C., Fabiani, E., Abu-Bobie, J., Gil, S., Novokava, M., et al. (1995) Molecular characterization of a carboxy-terminal eukaryotic-cell-binding domain of intimin from enteropathogenic Escherichia coli. Infect Immun 63: 43234328.
  • Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., and Miki, H. (2004) IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 64: 52375244.
  • Garber, J.J., Takeshima, F., Antón, I.M., Oyoshi, M.K., Lyubimova, A., Kapoor, A., et al. (2012) Enteropathogenic Escherichia coli and vaccinia virus do not require the family of WASP-interacting proteins for pathogen-induced actin assembly. Infect Immun 80: 40714077.
  • Garmendia, J., Phillips, A.D., Carlier, M.-F., Chong, Y., Schüller, S., Marches, O., et al. (2004) TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6: 11671183.
  • Garmendia, J., Ren, Z., Tennant, S., Viera, M.A., Chong, Y., Whale, A., et al. (2005) Distribution of tccP in clinical enterohemorrhagic and enteropathogenic Escherichia coli isolates. J Clin Invest 43: 57155720.
  • Garmendia, J., Carlier, M.-F., Egile, C., Didry, D., and Frankel, G. (2006) Characterization of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection. Cell Microbiol 8: 14441455.
  • Girard, F., Batisson, I., Frankel, G., Harel, J., and Fairbrother, J.M. (2005) Interaction of enteropathogenic and Shiga toxin-producing Escherichia coli and porcine intestinal mucosa: role of intimin and Tir in adherence. Infect Immun 73: 60056016.
  • Girard, F., Dziva, F., Stevens, M.P., and Frankel, G. (2009) Interactions of typical and atypical enteropathogenic Escherichia coli strains with the calf intestinal mucosa ex vivo. Appl Environ Microbiol 75: 59915995.
  • Girón, J.A., Ho, A.S.Y., and Schoolnik, G.K. (1991) An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254: 710713.
  • Golan, L., Gonen, E., Yagel, S., Rosenshine, I., and Shpigel, N.Y. (2011) Enterohemorrhagic Escherichia coli induce attaching and effacing lesions and hemorrhagic colitis in human and bovine intestinal xenograft models. Dis Model Mech 4: 8694.
  • Goosney, D.L., Gruenheid, S., and Finlay, B.B. (2000) Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu Rev Cell Dev Biol 16: 173189.
  • de Groot, J.C., Schlüter, K., Carius, Y., Quedenau, C., Vingadassalom, D., Faix, J., et al. (2011) Structural basis for complex formation between human IRSp53 and the translocated intimin receptor Tir of enterohemorrhagic E. coli. Structure 19: 12941306.
  • Gruenheid, S., DeVinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G.D., et al. (2001) Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3: 856859.
  • Hamburger, Z.A., Brown, M.S., Isberg, R.R., and Bjorkman, P.J. (1999) Crystal structure of invasin: a bacterial integrin-binding protein. Science 286: 291295.
  • Hayward, R.D., Hume, P.J., Humphreys, D., Phillips, N., Smith, K., and Koronakis, V. (2009) Clustering transfers the translocated Escherichia coli receptor into lipid rafts to stimulate reversible activation of c-Fyn. Cell Microbiol 11: 433441.
  • Huang, Z., Sutton, S.E., Wallenfang, A.J., Orchard, R.C., Wu, X., Feng, Y., et al. (2009) Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol 16: 853860.
  • Iguchi, A., Thomson, N.R., Ogura, Y., Saunders, D., Ooka, T., Henderson, I.R., et al. (2009) Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127:H6 strain E2348/69. J Bacteriol 191: 347354.
  • Isberg, R.R., and Falkow, S. (1985) A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317: 262264.
  • Isberg, R.R., and Leong, J.M. (1990) Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60: 861871.
  • Jarvis, K.G., Girón, J.A., Jerse, A.E., McDaniel, T.K., Donnenberg, M.S., and Kaper, J.B. (1995) Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci USA 92: 79968000.
  • Jerse, A.E., and Kaper, J.B. (1991) The eae gene of enteropathogenic Escherichia coli encodes a 94-kilodalton membrane protein, the expression of which is influenced by the EAF plasmid. Infect Immun 59: 43024309.
  • Kenny, B. (1999) Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31: 12291241.
  • Kenny, B. (2001) The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell Microbiol 3: 499510.
  • Kenny, B., DeVinney, R., Stein, M., Reinscheid, D.J., Frey, E.A., and Finlay, B.B. (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511520.
  • Knutton, S., Lloyd, D., and McNeish, A. (1987) Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55: 6977.
  • Knutton, S., Baldwin, T., Williams, P.H., and McNeish, A.S. (1989) Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57: 12901298.
  • Luo, Y., Frey, E.A., Pfuetzner, R.A., Creagh, A.L., Knoechel, D.G., Haynes, C.A., et al. (2000) Crystal structure of enteropathogenic Escherichia coli intimin–receptor complex. Nature 405: 10731077.
  • McDaniel, T.K., Jarvis, K.G., Donnenberg, M.S., and Kaper, J.B. (1995) A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 92: 16641668.
  • McGraw, E.A., Li, J., Selander, R.K., and Whittam, T.S. (1999) Molecular evolution and mosaic structure of alpha, beta, and gamma intimins of pathogenic Escherichia coli. Mol Biol Evol 16: 1222.
  • Mallick, E., McBee, M., Vanguri, V.K., Melton-Celsea, A.R., Schlieper, K., Karalius, B.J., et al. (2012) A novel murine infection model for Shiga toxin-producing Escherichia coli. J Clin Invest 122: 5153.
  • Manges, A.R., and Johnson, J.R. (2012) Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 55: 712719.
  • Marchès, O., Nougayrède, J., Mainil, J., Charlier, G., Raymond, I., Pohl, P., et al. (2000) Role of Tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect Immun 68: 21712182.
  • Miki, H., and Takenawa, T. (2003) Regulation of actin dynamics by WASP family proteins. J Biochem (Tokyo) 134: 309313.
  • Miyamoto, Y., Iimura, M., Kaper, J.B., Torres, A.G., and Kagnoff, M.F. (2006) Role of Shiga toxin versus H7 flagellin in enterohaemorrhagic Escherichia coli signalling of human colon epithelium in vivo. Cell Microbiol 8: 869879.
  • Moon, H.W., Whipp, S.C., Argenzio, R.A., and Giannella, R.A. (1983) Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 41: 13401351.
  • Moreau, V., Frischknecht, F., Reckmann, I., Vincentelli, R., Rabut, G., Stewart, D., and Way, M. (2000) A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2: 441448.
  • Mundy, R., MacDonald, T.T., Dougan, G., Frankel, G., and Wiles, S. (2005) Citrobacter rodentium of mice and man. Cell Microbiol 7: 16971706.
  • Munera, D., Martinez, E., Mahajan, A., Ayala-Sanmartin, J., and Frankel, G. (2012) Recruitment and membrane interactions of host cell proteins during attachment of enteropathogenic and enterohemorrhagic Escherichia coli. Biochem J 445: 383392.
  • Nataro, J.P., and Kaper, J.B. (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11: 142201.
  • Naylor, S.W., Roe, A.J., Nart, P., Spears, K., Smith, D.G.E., Low, J.C., and Gally, D.L. (2005) Escherichia coli O157:H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151: 27732781.
  • Ogura, Y., Ooka, T., Whale, A., Garmendia, J., Beutin, L., Tennant, S., et al. (2007) TccP2 of O157:H7 and non-O157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerization. Infect Immun 75: 604612.
  • Ooka, T., Vieira, M.A.M., Ogura, Y., Beutin, L., La Ragione, R., Van Diemen, P.M., et al. (2007) Characterization of tccP2 carried by atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett 271: 126135.
  • Phillips, A., Navabpour, S., Hicks, S., Dougan, G., Wallis, T., and Frankel, G. (2000) Enterohaemorrhagic Escherichia coli O157:H7 target Peyer's patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47: 377381.
  • Riley, L.W., Remis, R.S., Helgerson, S.D., McGee, H.B., Wells, J.G., Davis, B.R., et al. (1983) Hemorrhagic colitis associated with a rare Escherichia serotype. N Engl J Med 308: 681685.
  • Ritchie, J., and Waldor, M. (2005) The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infect Immun 73: 14661474.
  • Ritchie, J.M., Brady, M.J., Riley, K.N., Ho, T.D., Campellone, K.G., Herman, I.M., et al. (2008) EspFU, a type III-translocated effector of actin assembly, fosters epithelial association and late-stage intestinal colonization by E. coli O157:H7. Cell Microbiol 10: 836847.
  • Robins-Browne, R. (1987) Traditional enteropathogenic Escherichia coli of infantile diarrhea. Rev Infect Dis 9: 2853.
  • Robins-Browne, R., Tokhi, A., Adams, L.M., and Bennett-Wood, V. (1994) Host specificity of enteropathogenic Escherichia coli from rabbits: lack of correlation between adherence in vitro and pathogenicity for laboratory animals. Infect Immun 62: 33293336.
  • Rohde, H., Qin, J., Cui, Y., Li, D., Lomen, N.J., Hentschke, M., et al. (2011) Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365: 718724.
  • Rosenshine, I., Donnenberg, M., Kaper, J.B., and Finlay, B.B. (1992) Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J 11: 35513560.
  • Rosenshine, I., Ruschkowski, S., Stein, M., Reinscheid, D.J., Mills, S.D., and Finlay, B.B. (1996) A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J 15: 26132624.
  • Ross, N., and Miller, B. (2007) Characterization of the binding surface of the translocated intimin receptor, an essential protein for EPEC and EHEC cell adhesion. Protein Sci 16: 26772683.
  • Sallee, N.A., Rivera, G.M., Dueber, J.E., Vasilescu, D., Mullins, R.D., Mayer, B.J., and Lim, W. (2008) The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency. Nature 454: 10051008.
  • Shaw, R., Cleary, J., Murphy, M.S., Frankel, G., and Knutton, S. (2005) Interaction of enteropathogenic Escherichia coli with human intestinal mucosa: role of effector proteins in brush border remodeling and formation of attaching and effacing lesions. Infect Immun 73: 12431251.
  • Snapper, S.B., and Rosen, F.S. (1999) The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol 17: 905929.
  • Swimm, A., Bommarius, B., Reeves, P., Sherman, M., and Kalman, D. (2004) Complex kinase requirements for EPEC pedestal formation. Nat Cell Biol 6: 795796.
  • Tobe, T., Beatson, S.A., Taniguchi, H., Abe, H., Bailey, C.M., Fivian, A., et al. (2006) An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103: 1494114946.
  • Touzé, T., Hayward, R.D., Eswaran, J., Leong, J.M., and Koronakis, V. (2003) Self-association of EPEC intimin mediated by the β-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol Microbiol 51: 7387.
  • Trabulsi, L.R., Keller, R., and Gomes, T.A.T. (2002) Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 8: 508513.
  • Tzipori, S., Robins-Browne, R.M., Gonis, G., Hayes, J., Withers, M., and McCartney, E. (1985) Enteropathogenic Escherichia coli enteritis: evaluation of the gnotobiotic piglet as a model of human infection. Gut 26: 570578.
  • Vingadassalom, D., Kazlauskas, A., Skehan, B., Cheng, H.-C., Magoun, L., Robbins, D., et al. (2009) Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci USA 106: 67546759.
  • Vingadassalom, D., Campellone, K.G., Brady, M.J., Skehan, B., Battle, S.E., Robbins, D., et al. (2010) Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation. PLoS Pathog 6: e1001056.
  • Vlisidou, I., Dziva, F., Ragione, R.L., Best, A., Garmendia, J., Hawes, P., et al. (2006) Role of intimin-Tir interactions and the Tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infect Immun 74: 758764.
  • Weiss, S.M., Ladwein, M., Schmidt, D., Ehinger, J., Lommel, S., Städing, K., et al. (2009) IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 5: 244528.
  • Whale, A.D., Garmendia, J., Gomes, T.A., and Frankel, G. (2006) A novel category of enteropathogenic Escherichia coli simultaneously utilizes the Nck and TccP pathways to induce actin remodelling. Cell Microbiol 8: 9991008.
  • Whale, A.D., Hernandes, R.T., Ooka, T., Beutin, L., Schüller, S., Garmendia, J., et al. (2007) TccP2-mediated subversion of actin dynamics by EPEC 2 – a distinct evolutionary lineage of enteropathogenic Escherichia coli. Microbiology 153: 17431755.
  • Wong, A.R.C., Pearson, J.S., Bright, M.D., Munera, D., Robinson, K.S., Lee, S.F., et al. (2011) Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80: 219230.
  • Wong, A.R.C., Clements, A., Raymond, B., Crepin, V.F., and Frankel, G. (2012a) The interplay between the Escherichia coli Rho guanine nucleotide exchange factor effectors and the mammalian RhoGEF inhibitor. mBio 3: e00250-11.
  • Wong, A.R.C., Raymond, B., Collins, J.W., Crepin, V.F., and Frankel, G. (2012b) The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP-interacting protein (WIP). Cell Microbiol 14: 10511070.
  • Yu, J., and Kaper, J.B. (1992) Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol 6: 411417.
  • Zhao, H., Pykäläinen, A., and Lappalainen, P. (2011) I-BAR domain proteins: linking actin and plasma membrane dynamics. Curr Opin Cell Biol 23: 1421.